A GENERALIZATION OF JENSEN EQUATION FOR SET-VALUED MAPS

DORIAN POPA
Technical University Cluj-Napoca, Department of Mathematics
Str. C. Daicoviciu nr.15, Romania
E-mail: Popa.Dorian@math.utcluj.ro

Abstract

It is given a representation of the solutions of a generalization of Jensen equation for set-valued maps with closed and convex values. Keywords: Set-valued map, Jensen equation, additive. AMS Subject Classification: 39B52, 54C60.

1. Introduction

Let X be a real vector space, Y a real topological vector space. We denote by $0_{X}, 0_{Y}$ the origin of X and Y, by $\mathcal{P}_{0}(Y)$ the collection of all nonempty subsets of Y and by $C C l(Y)$ the collection of all nonempty, closed and convex subsets of Y.

For two nonempty subsets A and B of X (or Y) and a real number t we define the sets

$$
\begin{gather*}
A+B=\{x \mid x=a+b, a \in A, b \in B\} \\
t \cdot A=\{x \mid x=t a, a \in A\} . \tag{1}
\end{gather*}
$$

For any nonempty sets $A, B \subseteq X$ and any real numbers s, t the following relations holds

$$
\begin{gather*}
s(A+B)=s A+s B \\
(s+t) A \subseteq s A+t A . \tag{2}
\end{gather*}
$$

If A is a convex set and $s t \geq 0$ then
(3)

$$
(s+t) A=s A+t A
$$

Let K be a convex cone in X with $0_{X} \in K$ and p a real number $0<p<1$. We are looking for set-valued solutions $F: K \rightarrow \mathcal{P}_{0}(Y)$ of the equation

$$
\begin{equation*}
F((1-p) x+p y)=(1-p) F(x)+p F(y)+M \tag{4}
\end{equation*}
$$

where $M \in \mathcal{P}_{0}(Y)$.
For $p=\frac{1}{2}$ and $M=\left\{0_{Y}\right\}$ the equation (4) becomes the classical Jensen equation. It is well known that the solutions of classical Jensen equation for single valued maps are of the form $F(x)=a(x)+k$, where $a: K \rightarrow Y$ is an additive function and $k \in Y$
is a constant [4]. Classical Jensen equation for set-valued maps was studied by Z. Fifer [4], K. Nikodem [6], [7]. They give a characterization of the solutions of Jensen equation for set-valued maps with compact and convex values in a topological vector space. A generalization of Jensen equation was considered and studied by the author in [9]. The goal of this paper is to give a representation theorem of the solutions of the equation (4) if F has close and convex values.

2. Main Results

We start by proving an auxiliary lemma.
Lemma 2.1. Let X, Y be real vector spaces and K a convex cone in X containing the origin of X. If the set-valued map $F: K \rightarrow \mathcal{P}_{0}(Y)$ satisfies the equation (4) then

$$
\begin{equation*}
F(x+y)+F\left(0_{X}\right)=F(x)+F(y) \tag{5}
\end{equation*}
$$

for every $x, y \in K$.
Proof. For $x=y=0_{X}$ in (4) we get

$$
\begin{equation*}
F\left(0_{X}\right)=(1-p) F\left(0_{X}\right)+p F\left(0_{X}\right)+M \tag{6}
\end{equation*}
$$

and for $x=0_{X}$, respectively $y=0_{X}$ in (4) we obtain

$$
\begin{gather*}
F((1-p) x)=(1-p) F(x)+p F\left(0_{X}\right)+M, \quad x \in K, \tag{7}\\
F(p y)=(1-p) F\left(0_{X}\right)+p F(y)+M, \quad y \in K . \tag{8}
\end{gather*}
$$

Now let $u, v \in K$. By (4) we have

$$
\begin{equation*}
F(u+v)=F\left((1-p) \frac{u}{1-p}+p \frac{v}{p}\right)=(1-p) F\left(\frac{u}{1-p}\right)+p F\left(\frac{v}{p}\right)+M \tag{9}
\end{equation*}
$$

and taking account of $(6),(7),(8)$ we get

$$
\begin{gathered}
F(u+v)+F\left(0_{X}\right)=(1-p) F\left(\frac{u}{1-p}\right)+p F\left(\frac{v}{p}\right)+M+(1-p) F\left(0_{X}\right)+p F\left(0_{X}\right)+M= \\
=\left[(1-p) F\left(\frac{u}{1-p}\right)+p F\left(0_{X}\right)+M\right]+\left[(1-p) F\left(0_{X}\right)+p F\left(\frac{v}{p}\right)+M\right]= \\
=F(u)+F(v)
\end{gathered}
$$

and the lemma is proved.
Consider in what follows the equation

$$
\begin{equation*}
F(x+y)+C=F(x)+F(y) \tag{10}
\end{equation*}
$$

where $F: K \rightarrow \mathcal{P}_{0}(Y), K$ is a convex cone in X with $0_{X} \in K, C \in \mathcal{P}_{0}(Y), X$ is a real vector space and Y is a real topological vector space.

Lemma 2.2. Let C be a convex and sequentially compact subset of Y with $0_{Y} \in C$. A set-valued map $F: K \rightarrow C C l(Y)$ satisfies the equation (10) if and only if there exists an additive set-valued map $A: K \rightarrow C C l(Y)$ such that

$$
F(x)=A(x)+C
$$

for every $x \in X$.

Proof. Suppose that $F: K \rightarrow C C l(Y)$ satisfies the equation (10). It can be easily proved by induction that

$$
\begin{equation*}
F(n x)+(n-1) C=n F(x) \tag{11}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and every $x \in X$.
For $n=1$ the relation (11) is obvious. Suppose that the relation (11) holds for $n \in \mathbb{N}$ and we have to prove that

$$
F((n+1) x)+n C=(n+1) F(x) .
$$

We have:

$$
\begin{gathered}
F((n+1) x)+n C=F(n x+x)+C+(n-1) C= \\
=F(n x)+F(x)+(n-1) C=n F(x)+F(x)=(n+1) F(x) .
\end{gathered}
$$

Now let $x \in K$. From (11) we get:

$$
\begin{equation*}
\frac{1}{2^{n}} F\left(2^{n} x\right)+\frac{2^{n}-1}{2^{n}} C=F(x), \quad n \in \mathbb{N} . \tag{12}
\end{equation*}
$$

Denote $A_{n}(x)=\frac{1}{2^{n}} F\left(2^{n} x\right), n \geq 0$. The sequence of sets $\left(A_{n}(x)\right)_{n \geq 0}$ is decreasing. Indeed:

$$
\begin{gathered}
A_{n+1}(x)=\frac{1}{2^{n+1}} F\left(2^{n} x+2^{n} x\right) \subseteq \frac{1}{2^{n+1}}\left(F\left(2^{n} x+2^{n} x\right)+C\right)= \\
=\frac{1}{2^{n+1}}\left(F\left(2^{n} x\right)+F\left(2^{n} x\right)\right)=\frac{1}{2^{n+1}} \cdot 2 F\left(2^{n} x\right)=\frac{1}{2^{n}} F\left(2^{n} x\right)=A_{n}(x) .
\end{gathered}
$$

Put $A(x)=\bigcap_{n \geq 0} A_{n}(x) \in C C l(Y)$. Prove that $A(x) \neq \emptyset$.
Let $u \in F(x)$ fixed. From (12) it results that for every $n \in \mathbb{N}$ there exists $a_{n} \in$ $A_{n}(x)$ and $c_{n} \in C$ such that $u=a_{n}+\frac{2^{n}-1}{2^{n}} c_{n}$. The set C is sequentially compact, so there exists a subsequence $\left(c_{n_{k}}\right)_{k \geq 0}$ of $\left(c_{n}\right)_{n \geq 0}$ convergent to $c \in C$ and

$$
u=a_{n_{k}}+\frac{2^{n_{k}-1}-1}{2^{n_{k}}} c_{n_{k}}, \quad k \geq 0
$$

It results that $a_{n_{k}} \rightarrow u-c$ as $k \rightarrow \infty$. We show that $u-c \in \bigcap_{n \geq 0} A_{n}(x)$. Suppose that $u-c \notin \bigcap_{n \geq 0} A_{n}(x)$. Then there exists $p \in \mathbb{N}$ such that $u-c \notin A_{n_{p}}$. We have $a_{n_{k}} \in A_{n_{p}}$ for $\bar{k} \geq p$ and $\lim _{k \rightarrow \infty} a_{n_{k}} \in A_{n_{p}}$, because $A_{n_{p}}$ is closed, contradiction with $u-c \notin A_{n_{p}}$.

We prove that

$$
\begin{equation*}
A(x)+C=F(x), \quad x \in X \tag{13}
\end{equation*}
$$

Let $u \in A(x)+C, u=a+c, a \in A(x), c \in C$. It results that $a \in A_{n}(x)$ for every $n \geq 0$ and let $c_{n}=\frac{2^{n}-1}{2^{n}} c \in \frac{2^{n}-1}{2^{n}} C$. From the relation (12) it results that there exists $b_{n} \in F(x)$ such that $a+c_{n}=b_{n}, n \geq 0$ and $\lim _{n \rightarrow \infty} b_{n}=a+c \in F(x)$, because $F(x)$ is closed. Hence $A(x)+C \subseteq F(x)$.

Now let $b \in F(x)$. From (12) it results that for every $n \in \mathbb{N}$ there exists $a_{n} \in A_{n}(x)$ and $c_{n} \in C$ such that $b=a_{n}+\frac{2^{n}-1}{2^{n}} c_{n}$. The sequence $\left(c_{n}\right)_{n \geq 0}$ has a subsequence $\left(c_{n_{k}}\right)_{k \geq 0}$ convergent to $c \in C$, taking account of the sequential compactity of C. Hence the sequence $\left(a_{n}\right)_{n \geq 0}$ is convergent to $b-c \in A(x)$. Then $b=(b-c)+c \in A(x)+C$. The relation $F(x) \subseteq A(x)+C$ is proved. It follows that the relation (13) is true.

We prove that A is an additive set-valued map.
By the relation (10) and (13) we obtain

$$
A(x+y)+C+C=A(x)+A(y)+C+C
$$

and taking account of the cancellation law of Radström [2] it results that $A(x+y)=$ $A(x)+A(y)$ for every $x, y \in X$, hence A is an additive set-valued map.

If $F(x)=A(x)+C, x \in K$, where $A: K \rightarrow C C l(Y)$ is an additive set-valued map, then we get:

$$
\begin{aligned}
F(x+y) & +C=A(x+y)+C+C=A(x)+A(y)+C+C= \\
& =(A(x)+C)+(A(y)+C)=F(x)+F(y)
\end{aligned}
$$

for every $x, y \in X$.
The lemma is proved.
Theorem 2.1. If a set-valued map $F: K \rightarrow C C l(Y)$, with $F\left(0_{X}\right)$ sequentially compact set, satisfies the equation (4) then there exists an additive set-valued map $A: K \rightarrow \operatorname{ccl}(Y)$ and a compact convex set $B \in \mathcal{P}_{0}(Y)$ such that

$$
\begin{equation*}
F(x)=A(x)+B \tag{14}
\end{equation*}
$$

for every $x \in X$.
Proof. Suppose that F satisfies the equation (1) and let $\alpha \in F\left(0_{X}\right)$. The setvalued map $G: K \rightarrow C C l(Y)$, given by the relation

$$
\begin{equation*}
G(x)=F(x)-\alpha, \quad x \in X \tag{15}
\end{equation*}
$$

satisfies the equation

$$
\begin{equation*}
G((1-p) x+p y)=(1-p) G(x)+p G(y)+M \tag{16}
\end{equation*}
$$

and $0_{Y} \in G\left(0_{X}\right)$.
By Lemma 2.1 it results that G satisfies also the relation

$$
\begin{equation*}
G(x+y)+G\left(0_{X}\right)=G(x)+G(y) \tag{17}
\end{equation*}
$$

for every $x, y \in X$ and $G\left(0_{X}\right)$ is sequentially compact set. Then in view of Lemma 2.2 it results that there exists an additive set-valued map $A: K \rightarrow C C l(Y)$ such that $G(x)=A(x)+G\left(0_{X}\right)$ for every $x \in X$. It follows that $F(x)=A(x)+F\left(0_{X}\right)$ for every $x \in X$. Denoting $B=F\left(0_{X}\right)$ the theorem is proved.

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
[2] G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
[3] Z. Daróczi, Notwendige und hireichende Bedindungen für die Existenz von nichtkonstanten Lösungen linearer Functionalgleichungen, Acta Sci. Math. (Szeged), 22(1961), 31-41.
[4] Z. Fifer, Set-valued Jensen functional equation, Rev. Roumaine Math. Pures Appl., 31(1986), 297-302.
[5] M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equations and Jensen inequality, PWN - Universytet Slaski, Warszawa-Krakóv-Katovice, 1985.
[6] K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3(1987), 23-33.
[7] K. Nikodem, On concave and midpoint concave set-valued functions, Glasnik Matematički, Ser.III, 22(1987), 69-76.
[8] D. Popa, On single valuedness of some classes of set-valued maps, Automat. Comput. Appl. Math. 6(2), (1997), 46-49.
[9] D. Popa, Set-valued solutions for an equation of Jensen type, Rev. d'analyse numérique et de la théorie de l'approximation, Tome 28, No.1, 1999, 73-77.

