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1. Introduction

This section is devoted to introduce the ideas of controllability and observability.
Let Rn be the n-dimensional Euclidean space. Denote by W an open neighborhood

of x0 ∈ Rn. Consider the following control system

(S1)

{
x′(t) = f(t, x(t), u(t))
y(t) = h(x(t)), x(t0) = x0, t ∈ T

where T is an interval (bounded or not), t0 ∈ Int(T ), T 3 t 7→ x(t) ∈ Rn is the state
trajectory, T 3 t 7→ u(t) ∈ U ⊂ Rm is the control function, and T 3 t 7→ y(t) ∈ Rp is
the output curve.

Given system (S1) initialized at x0, the map

Sx0 : {T 37→ u(t)} → {T 37→ y(t)}
is called the input-output map.
Example. If f and h are linear functions and the dynamics of system (S1) is time
invariant, then we get the simplest case

(Sl)
x′(t) = Ax(t) + Bu(t), A ∈ Mn×n, B ∈ Mn×m,

y(t) = Cx(t), C ∈ Mp×n.
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x0
x1

Suppose we are given a system (S1) and an initial state x0. Let x1 be another state.
Is it possible to choose a control u to steer (S1) from x0 to x1? This is often referred
to as reachability, here x1 is reachable from x0.

If so, x1 is accessible from x0. What are the accessible states? Is x1 accessible from
x0 locally?

Roughly speaking, (S1) is controllable if every state is accessible from every other
state. What criteria (algebraic, geometrical) tell us when (S1) is controllable, [21]?

This time we are given an output ”record” t 7→ y(t), t ∈ [t0, tf ]. We ask what
information about the states can be obtained from such a record. Two initial states
x0, x0

′ are indistinguishable if no matter what control we use, the corresponding
trajectories always produce the same output record.

x0
x1

x0
′ x1

′

h

h

y(0)

y(T )

What are the indistinguishable/distinguishable states? Can states be locally distin-
guished?

(S1) is observable if any state is distinguishable from any other state. What criteria
is available here?

We will supply some answers to the above questions.
In a sense, observability is a ”dual” notion to controllability, as it will result from

section 2 and section 4.

The present lecture covers the following topics:
• controllability and observability in the time invariant case in finite dimensional

spaces, [22], [39];
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• controllability in the non-linear case in finite dimensional spaces, fixed point
method, [33], [11];

• controllability and observability of convex processes in finite dimensional
spaces, [3], [19], [4], [5], [8];

• constraint controllability in infinite dimensional Banach spaces [30], [1], [27]
• approximate null controllability of certain differential inclusions in infinite

dimensional Banach spaces.
At the same time many important topics in this field remain uncovered by the

present paper
• genericity, [10];
• delay systems, [18];
• stabilization of certain continuous or discrete systems, [39].

Some methods of approach are used regarding these problems
• algebraic, [18];
• geometrical, [10];
• analytical, [29];
• non-smooth, [3], [4], [5], [26].

2. Linear case in finite dimensional spaces

In this case we have system (Sl), i.e.,

x′(t) = Ax(t) + Bu(t), A ∈ Mn×n, B ∈ Mn×m,

y(t) = Cx(t), C ∈ Mp×n.

If the control function u is (at least) Lebesgue integrable, the general solution of the
above system is

(1) x(t) = eAtx(t0) +
∫ t

t0

eA(t−τ)Bu(τ) dτ, t ∈ T,

so that the output is given by

(2) y(t) = CeAtx(t0) + C

∫ t

t0

eA(t−τ)Bu(τ) dτ.

Following [36] we say that the system (S1) is (completely) state
(i) approximately controllable on the finite interval [t0, tf ] ⊂ T if given ε > 0 and

two arbitrary initial and final points x0 and xf in the state space there is an admissible
controller u(·) on [t0, tf ] steering x0, along a solution curve of (S1), to an ε-ball of x1,
that is such that ‖x(tf , t0, x0, u)− x1‖ ≤ ε.

(ii) exactly controllable on [t0, tf ] if ε = 0 in (i).
To system (S1) let us introduce the so-called controllability Gramian

(3) G(t0, tf ) =
∫ tf

t0

eA(tf−τ)BBT eAT (tf−τ)dτ,

and the controllability matrix

(4) Q = [B, AB, A2B, · · · , An−1B].
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Characterization theorem

Theorem 2.1.. For the linear time invariant system (Sl) the following statements
are equivalent

(a) (Sl) is completely controllable;
(b) the controllability Gramian satisfies G(t0, t) > 0 for all t > t0;
(c) the controllability matrix Q has rank n (Kalman criterion);
(d) the rows of eAtB are linearly independent functions of time;
(e) the rows of (sI −A)−1B are linearly independent functions of s;
(f) rank([A− λI,B]) = n, for all λ (suffices to check only the eigenvalues of A);
(g) vT B = 0 and vT A = λvT =⇒ v = 0 (Popov-Belevich-Hautus test);
(h) given any set Γ of numbers in C there exists a matrix K such that the spectrum

of A + BK is equal to Γ (pole placement condition).

The non-autonomous system (Sl) is completely observable on the finite interval
[t0, tf ] if for each admissible control on [t0, tf ] and for every two responses x(t) and
x(t) with distinct initial conditions, the outputs Cx(t) and Cx(t) are distinct.

Given the system [A,B, C], the adjoint system is defined as [−AT , CT , BT ].
By duality we can state

Theorem 2.2.. For the linear time invariant system (Sl) we have that the system
[A,B, C] is completely controllable if and only if the system [−AT , CT , BT ] is com-
pletely observable.

Remark 2.1. Based on theorem 2.2 all statements of theorem 2.1 can be converted
in statements on observability. 4

3. Controllability to some non-linear cases, fixed point method

Many times the heavy duty in establishing a controllability result is carried out by
a fixed point theorem: the Leray-Schauder fixed point theorem in [14] and [9], the
Banach and the Karlin-Bohnenblust fixed point theorems in [11]. In [12] this job is
carried out by an inverse function theorem. For fixed point theorems see, e.g., [35],
[33], [32], and [34] as well as the references therein.

As a quite general rule the case considered here concerns with problems having the
dynamics governed by ([11])

(5) x′ = Ax + Nx, x(t0) = x0,

where A is the linear part and N the non-linear part.
In [14] it is studied the following finite-dimensional control system

(6) x′(t) = A(t, x(t))x(t) + B(t, x(t))u(t) x(t0) = x0,

where the elements of matrices A and B are continuous functions of x for fixed t,
piecewise continuous functions of t for fixed x, and are bounded over a finite time-
interval.

In order to formulate the problem in terms of a fixed-point theorem, it is assumed
that the linear system

(7) x′(t) = A(t, z(t))x(t) + B(t, z(t))u(t)
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is controllable, where z is a specified function belonging to the space C[t0, tf ;Rn].
The solution in terms of the state transition matrix S(t, t0; z) is

(8) x(t) = S(t, t0; z)x0 +
∫ t

t0

S(t, τ ; z)B(τ, z)u(τ)dτ.

Define

H(t0, τ ; z) = S(t0, τ ; z)B(τ, z),

G(t0, t; z) =
∫ t

t0

H(t0, τ ; z)HT (t0, τ ; z)dτ

Then the particular control function

(9) u(t) = HT (t0, t; z)G(t0, tf ; z)−1[S(tf , t0; z)−1x1 − x0]

drives the system (7) from x0 to x1 in a finite time. Substituting u(t) into the right-
hand side of (8) yields the nonlinear operator

(10) (Pz)(t) = S(t, t0; z)x0 +
∫ t

t0

S(t, τ ; z)B(τ, z)HT G−1[S(tf , t0; z)−1x1 − x0]dτ.

Clearly Pz(t0) = x0 and Pz(tf ) = x1. Thus if a fixed point of the operator P is
obtained, control (9) steers system (6) from x0 to x1 in time tf − t0.

Let us introduce a preliminary result based on the Schauder fixed point theorem,
[33].

Lemma 3.1.. ([14]) Suppose that
(i) the elements of matrices A and B are continuous functions of x for fixed t,

piecewise continuous functions of t for fixed x, and are bounded over a finite
time-interval;

(ii) there exists a constant d > 0 such that

inf
z∈C([t0,tf ])

detG(tf , z) ≥ d

for a tf > t0.

Then for any x0, x1 ∈ Rn the operator P has a fixed point in C([t0, tf ];Rn).

Now the controllability of system (6) follows as

Theorem 3.1.. ([14]) The system (6) is globally completely controllable at the instant
t0 if there are fulfilled the assumptions (i) and (ii) of lemma 3.1 for a tf > t0.

Remarks 3.1. (a) In a similar way sufficient conditions for controllability of the
perturbed quasi-linear system

(11) x′ = A(t, x, u)x + B(t, x, u)u + f(t, x, u).

are studied, [13].
(b) Observability problems can be studied also by fixed point methods, [11]. 4
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4. Controllability and observability of convex
processes in finite dimensional spaces

Differential inclusions are natural extensions of differential equations, [2], [15].
A convex process A from Rn to itself is a set-valued map satisfying

(12) ∀x, y ∈ DomA, λ, µ ≥ 0, λA(x) + µA(y) ⊂ A(λx + µy),

that is, a set-valued map whose graph is a convex cone.
We associate with a strict closed convex process A the Cauchy problem for the

differential inclusion: find an absolutely continuous function x(·) satisfying

(13) x′(t) ∈ A(x(t)), a.e., t ∈ [t0, tf ] x(t0) = 0.

We denote the reachable set at time t by

(14) Rt := {x(t) | x is a solution of (13)}
and by

(15) R := ∪t>t0Rt

the reachable set. We say that the differential inclusion (13) (or the convex process
A) is controllable if the reachable set R is equal to Rn.

It is well-known that for linear problems the reachable sets are invariant. It is
useful to extend the concept of invariant subspace by a linear operator. This can be
done in two ways: let A a convex process and P be a closed convex cone contained
in DomA. We recall that the tangent cone T (P ; x) at a point x ∈ P is defined by

(16) T (P ; x) := cl
(
∪h>0

1
h

(P − x)
)

.

We say that P is invariant by A if

(17) ∀x ∈ P, A(x) ⊂ T (P ;x)

and that P is a viability domain for A if

(18) ∀x ∈ P, A(x) ∩ T (P ;x) 6= ∅.
A real number λ such that Im(A− λI) 6= Rn is an eigenvalue of A.
Let A a convex process. Its transpose A∗ is defined by

(19) p ∈ A∗(q) ⇐⇒ ∀ (x, y) ∈ G(A), 〈p, x〉 ≤ 〈q, y〉.
We associate with the differential inclusion (13) the adjoint inclusion

(20) −q′(t) ∈ A∗(q(t)), a.e. t ∈ [t0, tf ].

We introduce the cones Qtf
and Q by

(i) Qtf
:= {η | ∃q(·) solution to (20) satisfying q(tf ) = η},

(ii) Q := ∩t>tf
Qt.

(21)

To say that Q = 0 amounts to saying that the only solution to (20) defined on [0,∞[
is q = 0 or that the adjoint system is observable.

If there is a solution q 6= 0 and λ ∈ R to the inclusion λq ∈ A∗(q), the q is an
eigenvector of A∗. Then there hold the next result
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Theorem 4.1.. ([3]) Let A be a strict convex process. The following conditions are
equivalent.
(a) differential inclusion (13) is controllable (i.e., R = Rn);
(b) differential inclusion (13) is controllable at some time t > 0 (i.e. Rt = Rn);
(c) the adjoint system (20) is observable (i.e., Q = {0});
(d) the adjoint system (20) is observable at some time t (i.e., Qt = {0});
(e) Rn is the smallest closed convex cone invariant by A;
(f) {0} is the largest closed convex cone which is a viability domain for A∗;
(g) A has neither proper invariant subspaces nor eigenvalues;
(h) A∗ has neither proper invariant subspaces nor eigenvectors.

By duality we infer the equivalent characteristic properties of system (20)

Theorem 4.2.. ([3]) Let A be a strict convex process. The following conditions are
equivalent
(a) the adjoint inclusion (20) is observable;
(b) the adjoint inclusion (20) is observable at time t > t0 for some t;
(c) {0} is the largest closed convex cone which is a viability domain for A∗;
(d) A∗ has neither proper invariant subspaces nor eigenvectors.

Other results on the same vein may be found in [3], [19], [4], and [5].

5. Constraint controllability in infinite dimensional Banach spaces

Much attention has been paid to extend in various direction the well-known Kalman
criterion on the controllability of autonomous linear processes in Rn, [22, p. 81]. The
present section extends to the case of Banach spaces two results given earlier in [27]
and [30] for the case of Hilbert spaces. Paper [27] exhibits a necessary and sufficient
result on controllability, sharpening a previous one introduced in [30].

Let us introduce some notations. If X is a topological space and Y ⊂ X, then by
intY and cl Y we denote the set of interior points, and the closure of Y, respectively.
If X is a Banach space, then by L(X) we denote the space of linear and bounded
operators from X in X. X∗ is the Banach space of the linear and continuous func-
tionals on X. Let F be a multifunction from a σ-algebra to a Banach space. By SF

we denote the set of measurable selections from F, while by S1
F we denote the set of

Bochner integrable selections from F, [24], [25], [26].

5.1. The first result. Let T := [t0, tf ], µ the Lebesgue measure on T, X and Y be
separable real Banach spaces. Consider

(U) a measurable multifunction U : T ; Y having nonempty and closed values
such that S1

U 6= ∅;
(B) a mapping B : T × Y → X measurable in the first variable and continuous in

the second one and fulfilling an estimation of the following form

‖B(t, u)‖ ≤ l(t) + b‖u‖, a.e., where l ∈ L1
+, b ≥ 0;
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(A) a family {A(t)}t∈T of linear and densely defined operators generating an evo-
lution operator S : ∆ = {(t, s) ∈ T × T | t0 ≤ s ≤ t ≤ tf} → L(X), i.e.

S(t, t) = I, ∀t ∈ T, I is the identity,
S(t, τ)S(τ, s) = S(t, s), ∀ t0 ≤ s ≤ τ ≤ tf ,
S : ∆ → L(X) is continuous in the strong operator topology, [31].

Under the above conditions our attention focuses on the following system

(22) x′(t) = A(t)x(t) + B(t, u(t)), t ∈ T, u ∈ SU .

We will see some properties of the mild solutions of the system (22), i.e. given
x0 ∈ X (as initial value) a mild solution of (22) is a continuous function x ∈ C(T, X)
which can be written as

(23) x(t) = S(t, t0)xt0 +
∫ t

t0

S(t, s)B(s, u(s))ds, t ∈ T,

where u is a measurable selection of the multifunction U such that B(·, u(·)) ∈ L1.
The reachable set from x0 at time t ∈ T is defined as

(24) R(t, x0) = {x(t) ∈ X | x(·) is a mild solution of (22)}.
From (23) and (24) easily follows that

R(t, y0) = S(t, t0)(y0 − x0) + R(t, x0).

The latter equality means that the topological properties of the reachable set are
invariant under translations.

Different notions of controllability are investigated in [36] and [37]. We now
recall here only one. The system (22) is said to be approximately controllable
on T if for every x0 ∈ X we have that int clR(tf , x0) 6= ∅. If B(t, u) = B(t)u,
then this definition agrees with the corresponding one given in [36]. We denote
S(t, s)B(s, U(s)) = {S(t, s)B(s, u) | u ∈ U(s), t0 ≤ s ≤ t ≤ tf}.

Starting from [30] and [27] we state our

Theorem 5.1.. Admit the (U), (B) and (A) hypotheses and consider system (22).
Moreover, suppose that

(i) µ{t ∈ T | S(tf , t)B(t, U(t)) is not a singleton} > 0,
(ii) the multifunction T 3 t 7→ S(tf , t)B(t, U(t)) is graph measurable.

Then system (22) is approximate controllable on T if and only if there exists no
x∗ ∈ X∗ \ {0} so that x∗(S(tf , t)B(t, U(t))) = constant, a.e. on T.

Proof. Necessity. Suppose that there exists x∗ ∈ X∗ \ {0} with
x∗(S(tf , t)B(t, U(t))) = constant, a.e. on T. Then there exists u ∈ S1

U so that if
c(t) := x∗(S(tf , t)B(t, u(t))), it follows c(·) ∈ L1 and R(tf , 0) 6= ∅. Let x ∈ R(tf , 0).
Then there exists u ∈ S1

U such that

x(tf ) =
∫ tf

0

S(tf , t)B(t, u(t)) dt.
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Taking into account [38, Corollar V.5.2, p.134] it follows that

x∗(x) = x∗
(∫ tf

t0

S(tf , t)B(t, u(t))dt

)
=

∫ tf

t0

x∗(S(tf , t)B(t, u(t))dt

=
∫ tf

t0

x∗(c(t))dt = k ∈ R.

Let z ∈ V := {z ∈ X | x∗(z) = k}. V is a closed hyperplane and cl(R(a, 0)) ⊂ V.
Hence int cl(R(tf , 0)) ⊂ int(V ), so int cl(R(tf , 0)) = ∅, i.e. our (22) system is not
controllable.
Sufficiency. The idea is simple: to choose two integrable selections from S(b, ·)B(·,
U(·)) far away one from the other such that the corresponding solutions of system
(22) to be also sufficiently far one from the other.

From the Castaing representation theorem, [20, theorem 5.6] or [24, theorem 4.2.3],
it follows that there exists {un}n≥1 a countable family of measurable functions such
that U(t) = cl{un(t) | n ≥ 1}, for all t ∈ T.

Let us choose an arbitrary, but fixed x∗ ∈ X∗ \ {0}. Then for t in a subset of T
having a strictly positive measure there exist v1, v2 ∈ S(tf , t)B(t, U(t)) with x∗(v1 −
v2) 6= 0.

For a while we admit that U has bounded values, too. Later on we will remove
this extra assumption. Define the following mappings

M(t) = sup{x∗(S(tf , t)B(t, U(t)))} = sup
n
{x∗(S(tf , t)B(t, un(t)))},

m(t) = inf{x∗(S(tf , t)B(t, U(t)))} = inf
n
{x∗(S(tf , t)B(t, un(t)))}.

From the hypotheses it follows that

‖x∗(S(tf , t)B(t, U(t)))‖ ≤ ‖x∗‖ · ‖S(tf , t)‖(l(t) + b‖u(t)‖),
and from the boundedness of U we may write

−∞ < m(t) ≤ M(t) < +∞, a.e. on T.

Also we have that the mappings m and M are measurable on T and, at the same
time,

η(t) := [M(t)−m(t)]/2, t ∈ T,

is measurable. From (i) it follows that if C := {t ∈ T | η(t) > 0}, then µ(C) > 0.
Define ε : C → R+ as ε(t) := η(t)/2, t ∈ C. Since the differences M(t)− ε(t), respec-
tively m(t) − ε(t) are well defined for all t ∈ C we may consider the multifunctions
Li(h) : C ; Y, i = 1, 2 defined by

(25)

{
L1(h)(t) := {u ∈ U(t) | x∗(S(tf , t)B(t, u)) ≥ M(t)− ε(t)},
L2(h)(t) := {u ∈ U(t) | x∗(S(tf , t)B(t, u)) ≤ m(t) + ε(t)}.

Let us check that L1 and L2 are graph measurable. Note that

graph L1 = graphU ∩ graph F1, graph L2 = graph U ∩ graphF2,



290 MARIAN MUREŞAN

where
C 3t 7→ F1(t) := {x ∈ Y | f1(t, x) ≥ 0},
C 3t 7→ F2(t) := {x ∈ Y | f2(t, x) ≤ 0},

and

(26)

{
f1(t, x) := x∗(S(a, t)B(t, x))− (M(t)− ε(t)), t ∈ C, x ∈ Y,

f2(t, x) := x∗(S(a, t)B(t, x))− (m(t) + ε(t)), t ∈ C, x ∈ Y.

Invoking [20, theorem 6.4], we infer the measurability of F1 and F2. Hence L1 and L2

are graph measurable. By the Aumann selection theorem, [20, theorem 5.2], we can
choose two measurable functions u1 and u2 such that

ui : C → Y, ui(t) ∈ Li(h)(t), a.e. , i = 1, 2.

Obviously

(27) x∗(S(tf , t)B(t, u2(t)) < x∗(S(tf , t)B(t, u1(t)), t ∈ C.

Now our desire is to substitute the measurable functions u1 and u2 by integrable ones,
[30]. The substitution is realized in such a way keeping valid an inequality of the form
(27). For p > 0 and u ∈ S1

U define

u1,p(t) =

{
u1(t), if t ∈ C and ‖u1(t)‖ ≤ p,

u(t), otherwise,

u2,p(t) =

{
u2(t), if t ∈ C and ‖u2(t)‖ ≤ p,

u(t), otherwise.

Then u1,p, u2,p ∈ S1
U and

(28) x∗(S(tf , t)B(t, u2,p(t))) ≤ x∗(S(tf , t)B(t, u1,p(t))), t ∈ T.

For p sufficiently large the above inequality is strictly on a measurable subset having
strictly positive measure. Let x1,p, x2,p be the trajectories of system (22) correspond-
ing to u1,p, respectively u2,p. Then for p sufficiently large we have

0 <

∫ tf

t0

x∗(S(tf , t)[B(t, u1,p(t))−B(t, u2,p(t))]) dt = x∗(x1,p(tf )− x2,p(tf )).

Since the functional x∗ ∈ X∗ \ {0} has been chosen arbitrary, we infer that the
reachable set R(tf , 0) is not included in any closed hyperplane in X.

Hereafter the proof goes identically as the last part of proof to [30, theorem 2.1].
Now let us remove the assumption on the boundedness of the values of U. It means

that M or m or both may be unbounded on some t ∈ T. Let us introduce the following
functions

M(t) =

{
M(t), if M(t) < +∞,

1, otherwise,

m(t) =

{
m(t), if m(t) > −∞,

0, otherwise.
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Then we define η(t) := [M(t) −m(t)]/2 and in (25) and (26) we consider M and m
instead of M, respectively m. Then we repeat the last part of the proof of the previous
case.

At the end we get the same conclusion on the reachable set as before. Thus the
proof is complete. 2

Remarks 5.1. (a) If we consider the following scalar system

(29) x′ = x + B(t, u), B(t, u) = u, u ∈ U := R,

then following the estimation as in [30] it results that M = +∞ and m = −∞. Thus
η = +∞ and the multifunctions L1 and L2 have empty values.

(b) Actually, the definitions of M and m as they appear in [30] are difficult to
comprehend, since the supremum and the infimum are taken on a Hilbert space with
no kind of order.

(c) The assumption ”µ{t ∈ T | U(t) is not a singleton} > 0”, as it is assumed in
[30], it is not enough, since if we consider again the scalar system of the following
form

(30) x′ = x + B(t, u), B(t, u) = f(t)

such that f is measurable and U is set-valued and measurable, arbitrary, then the
reachable set is a singleton. Hence the study of controllability makes no sense.

(d) As it is shown in [30] under some circumstances theorem 5.1 reduces to the
Kalman criterion.

(e) When X is a separable real Hilbert space the above result has been obtained in
[27].

5.2. The second result. System (22) is said to be approximately locally null con-
trollable if there exists an open neighborhood V of the origin such that for all x0 ∈ V,
0 ∈ cl(R(tf , x0)).

Theorem 5.2.. If U : T → CCo(Y ) is a weakly measurable multifunction such that
for all t ∈ T, U(t) ⊂ W, where W is a weakly compact subset of Y and hypothesis (B)
holds. Then

(a) if S(tf , t)B(t, U(t)) 6= {0} on a set of positive Lebesgue measure and (22) is
approximately locally null-controllable, then there exists x∗ ∈ X∗ \ {0} and
E ⊂ T Legesgue measurable such that

µ(E) > 0, and 0 < σ(x∗, S(tf , t)B(t, U(t))) ∀ t ∈ E;

(b) if 0 ∈ B(t, U(t) a.e. and for every x∗ ∈ X∗ \ {0} there exists E(x∗) ⊂ T
Lebesgue measurable with µ(E(x∗)) > 0 such that for all t ∈ E(x∗) 0 <
σ(x∗, S(tf , t)B(t, U(t))), then (22) is approximately locally null controllable.
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6. Approximate null controllability of certain differential inclusions
in infinite dimensional Banach spaces

This section is devoted to the study of the approximate null controllability of the
following Cauchy problem for quasi-differential inclusions

(31)





dx(t)
dt

∈ A(t, x(t))x(t) + F (t, x(t)), a.e. t ∈ T

x(t0) = x0,

where A(t, w) is a linear operator in a Banach space X depending on t ∈ T and
w ∈ X. If the operator A depends only on t, the differential inclusion (31) is said to
be semi-linear.

Let T be the interval T = [t0, tf ], tf fixed, and X a Banach space. A family of
bounded linear operators U(t, s) on X, t0 ≤ s ≤ t ≤ tf , depending on two parameters
is said to be an evolution system, [31], if the following two conditions are fulfilled

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for t0 ≤ s ≤ r ≤ t ≤ tf ;
(ii) (t, s) 7→ U(t, s) is strongly continuous for t0 ≤ s ≤ t ≤ tf , i.e., limt↓s U(t, s)x

= x, for all x ∈ X.

We use the following assumptions

(X) X is a real separable Banach space;
(A) for every u ∈ C(T, X) the family {A(t, u) | t ∈ T} of linear operators generates

a unique strongly continuous evolution system, Uu(t, s), t0 ≤ s ≤ t ≤ tf ;
(U) if u ∈ C(T,X), the evolution system Uu(t, s), t0 ≤ s ≤ t ≤ tf satisfies:

(i) ∃ c1 ≥ 0 with ‖Uu(t, s)‖ ≤ c1 for any t0 ≤ s ≤ t ≤ tf , uniformly in u;
(ii) ∃ c2 ≥ 0 such that for any u, v ∈ C(T,X) and any w ∈ X there holds

‖Uu(t, s)w − Uv(t, s)w‖ ≤ c2‖w‖
∫ t

s

‖u(τ)− v(τ)‖ dτ.

Remark 6.1. If the operator A does not depend on w, but it depends on t, then the
assumption (A) reads as follows: {A(t) | t ∈ I} generates a unique strongly continuous
evolution system U(t, s), 0 ≤ s ≤ t ≤ T. In this case we take c2 = 0 (in (ii) from
(U)). 4

In connection with the multifunction F we will use the following assumptions:

(F1) the multifunction F is defined on T × X and it has closed and nonempty
values in X. For each x ∈ X, F (· , x) is measurable;

(F2) F satisfies (F1) and, moreover, it is k(t)-Lipschitz, i.e., there exits k ∈
L1(T, R+) such that for almost all t ∈ T and every x, y ∈ X,
D(F (t, x), F (t, y)) ≤ k(t)‖x− y‖, D being the Hausdorff-Pompeiu metric;

(F3) F is integrable bounded by a function m ∈ L1(T, R+), i.e., for all x ∈ C(T, X)
and t ∈ T we have that F (t, x(t)) ⊂ m(t)B, B being the unit closed ball in
X;

(F4) the function T 3 t 7→ d(0, F (t, 0)) is integrable on I;
(F5) d(0, F (t, 0)) = 0 on T.
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Hereafter we are interested by the mild solutions of (31), i.e. the continuous
functions having the following representation

x(t) = Ux(t, t0)x0 +
∫ tf

t0

Ux(t, s)f(s) ds, t ∈ T, f ∈ SFx ,

where SFx is the set of integrable selections from F (·, x(·)).
Together with (31) we consider

(32)





dy(t)
dt

∈ A(t, y(t))y(t) + g(t), g ∈ L1(T, X), a.e. on T

y(t0) = y0,

(S) Suppose that the problem (32) has the following mild solution

y(t) = Uy(t, t0)y0 +
∫ tf

t0

Uy(t, s)g(s) ds, t ∈ T.

The system (31) is said to be locally approximately null controllable if for any
ε > 0 there exists V a neighborhood of the origin and a solution x of (31) such that
if x(t0) = x0 ∈ V, then ‖x(tf )‖ ≤ ε.

We admit that the assumptions (X), (A), (F2), and (F3) are fulfilled and we con-
sider the problems (31) and (32). Let us denote δ = ‖x0 − y0‖, p = c2(‖x0‖+ ‖m‖1),
K(t) =

∫ t

o
[p + 2c1k(s)]ds, E(t) = exp(K(t)), t ∈ I. Moreover, we invoke (S) and

denote γ(t) = d(g(t), F (t, y(t))), t ∈ T. Based on Lemma 2.3 in [23] or on Lemma
2.15 in [28] we have that γ ∈ L1 and so let n(t) = c1[δ +

∫ t

0
2γ(s) ds], t ∈ T. The

following Filippov type existence result takes place.

Theorem 6.1.. ([23]) We admit the following assumptions (X), (A), (U), (F2), (F3),
(F4), and (S). Then problem (31) has a mild solution x ∈ C(I, X) such that

(33) ‖x(t)− y(t)‖ ≤ c1

[
δE(t) +

∫ t

t0

E(t)
E(s)

2γ(s) ds

]
, on T

and

(34) ‖f(t)− g(t)‖ ≤ 2γ(t) + 2k(t)c1

[
γ(t)E(t) +

∫ t

t0

E(t)
E(s)

2γ(s) ds

]
, a.e. on T.

It results the next continuous dependence result

Theorem 6.2.. ([23]) Let f, g ∈ L1(T,X), χ = ‖f − g‖1, such that there are satisfied
all the assumptions of the Theorem 6.1 taking f instead of F. Denote by x and y two
mild solutions of the quasi-linear equations corresponding to f, x0, respectively g, y0.
Then the following estimation holds

‖x(t)− y(t)‖ ≤ c1(χ + δ) exp[c2(min{‖x0‖, ‖y0‖}+ min{‖f‖1, ‖g‖1})t], t ∈ T.

Now it comes the approximately null controllability result

Theorem 6.3.. Suppose that there fulfilled all the assumptions of Theorem 6.1 and,
moreover, (F5). Then the problem (31) is locally approximately null controllable.
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Proof. In (32) we consider g = 0 and y0 = 0. Then γ = 0. From Theorem 6.2 we
have that the unique mild solution of (32) is y(t) = 0 on T. Applying Theorem 6.1
from (33) we get that

(35) ‖x(tf )− 0‖ ≤ c1δE(tf ).

But E(tf ) is bounded, hence if δ = ‖x0‖ is small enough, then the right hand side of
(35) is as small as we wish. 2

Remark 6.2. In our approach the assumption (F5) is necessary, too. Let us consider
the following example

(36) dz(t)/dt = z + z2 + 1/4, t ≥ 0, z(0) = z0.

The general solution of the equation (36) is

(37) z(t) = −1/2 + 1/[2/(2z0 + 1)− t].

The function defined by (37) for z0 in absolute value small does not converge to 0 for
any positive t. Moreover, it remains far away from zero. Here A = 1. F (t, z(t)) is
equal to z2(t) + 1/4 and does not satisfy (F5). 4
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