Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 255-260 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

RESULTS ON QUASISTATIC ANTIPLANE CONTACT PROBLEMS WITH SLIP DEPENDENT FRICTION

A. MATEI*, V.V. MOTREANU**

* Craiova University, Department of Matematics 1100 Craiova, Romania E-mail: AndaluziaMatei@k.ro

** Université de Perpignan, Laboratoire de Théorie des Systèmes 66860 Perpignan, France E-mail: viorica@univ-perp.fr

Abstract. In this paper we present same recent results on quasistatic antiplane contact problems, where general versions of Tresca's friction law are considered. **Keywords**: evolution problem, quasivariational inequality, elastic and viscoelastic materials, antiplane contact problem.

AMS Subject Classification: 47J35, 49J40, 74M15, 74D10.

1. INTRODUCTION

This paper is a survey on our recent results on quasistatic antiplane contact problems, where general versions of Tresca's friction law (see [1] for details) are considered. First, we recall in Section 2 an abstract result on evolution variational inequalities obtained in [4], then we apply it in Section 3 in the study of an elastic contact problem with slip dependent friction and provide a result obtained in [3]. Further, in Section 4 we slightly generalize a result obtained in [2] which expresses the convergence of the viscoelastic solution to the solution of the elastic problem studied in Section 3.

2. An abstract existence and uniqueness result in [4]

In this section we recall an existence and uniqueness result which was established in [4] in the study of the following evolution problem.

Problem *P***.** *Find* $u : [0, T] \to V$ such that

$$\begin{aligned} a(u(t), v - \dot{u}(t)) + j(u(t), v) - j(u(t), \dot{u}(t)) &\geq (f(t), v - \dot{u}(t))_V \\ \forall v \in V, \ a.e. \ t \in (0, T), \\ u(0) &= u_0. \end{aligned}$$

Here, V denotes a real Hilbert space and suppose that

 $(i_1) \ a: V \times V \to \mathbb{R}$ is a bilinear, continuous, symmetric form for which there exists m > 0 such that $a(v, v) \ge m \|v\|_V^2, \ \forall v \in V.$

 $(i_2) \ j : V \times V \to \mathbb{R}$ is positively homogeneous and subadditive with respect to the second argument.

$$(i_3) \ f \in W^{1,\infty}(0,T;V), \ u_0 \in V, \ a(u_0,v) + j(u_0,v) \ge (f(0),v)_V \quad \forall v \in V.$$

Consider the properties below.

 (j_1) For every sequence $\{u_n\} \subset V$ with $||u_n||_V \to \infty$, every sequence $\{t_n\} \subset [0,1]$ and each $\overline{u} \in V$, one has

$$\liminf_{n \to \infty} \left[\frac{1}{\|u_n\|_V^2} j_2'(t_n u_n, u_n - \overline{u}; -u_n) \right] < m$$

 (j_2) For every sequence $\{u_n\} \subset V$ with $||u_n||_V \to \infty$, every bounded sequence $\{\eta_n\} \subset V$ and each $\overline{u} \in V$ one has

$$\liminf_{n \to \infty} \left[\frac{1}{\|u_n\|_V^2} j_2'(\eta_n, u_n - \overline{u}; -u_n) \right] < m.$$

 (j_3) For all sequences $\{u_n\} \subset V$ and $\{\eta_n\} \subset V$ such that $u_n \rightharpoonup u \in V$, $\eta_n \rightharpoonup \eta \in V$ weakly in V and for every $v \in V$, the inequality below holds

$$\limsup_{n \to \infty} \left[j(\eta_n, v) - j(\eta_n, u_n) \right] \le j(\eta, v) - j(\eta, u).$$

 (j_4) There exists $c_0 \in (0,m)$ such that

$$j(u, v - u) - j(v, v - u) \le c_0 ||u - v||_V^2 \quad \forall u, v \in V.$$

 (j_5) There exist two functions $a_1: V \to \mathbb{R}$ and $a_2: V \to \mathbb{R}$ which map bounded sets in V into bounded sets in \mathbb{R} such that $a_1(0_V) < m - c_0$ and

$$|j(\eta, u)| \le a_1(\eta) ||u||_V^2 + a_2(\eta) \quad \forall \eta, u \in V.$$

 (j_6) For every sequence $\{\eta_n\} \subset V$ with $\eta_n \rightharpoonup \eta \in V$ weakly in V and every bounded sequence $\{u_n\} \subset V$ one has $\lim_{n \to \infty} [j(\eta_n, u_n) - j(\eta, u_n)] = 0$.

 (j_7) For every $s \in (0,T]$ and every functions $u, v \in W^{1,\infty}(0,T;V)$ with u(0) = v(0), $u(s) \neq v(s)$, the inequality below holds

$$\int_0^s [j(u(t), \dot{v}(t)) - j(u(t), \dot{u}(t)) + j(v(t), \dot{u}(t)) - j(v(t), \dot{v}(t))]dt < \frac{m}{2} \|u(s) - v(s)\|_V^2.$$

 (j_8) There exists $\alpha \in (0, \frac{m}{2})$ such that for every $s \in (0, T]$ and every functions $u, v \in W^{1,\infty}(0,T;V)$ with $u(s) \neq v(s)$, the inequality below holds

$$\int_0^s [j(u(t), \dot{v}(t)) - j(u(t), \dot{u}(t)) + j(v(t), \dot{u}(t)) - j(v(t), \dot{v}(t))]dt < \alpha \|u(s) - v(s)\|_V^2.$$

In (j_1) - (j_2) , j'_2 denotes the directional derivative with respect to the second variable, i.e.

$$j_{2}'(\eta, u; v) = \lim_{\lambda \to 0^{+}} \frac{1}{\lambda} \Big[j(\eta, u + \lambda v) - j(\eta, u) \Big] \quad \forall \eta, \, u, \, v \in V,$$

which exists since $j(\eta, \cdot) : V \to \mathbb{R}$ is a convex functional for all $\eta \in V$. In the study of Problem P the following result was obtained.

Theorem 1. (D. Motreanu and M. Sofonea [4]) Assume (i_1) - (i_3) .

(i) If (j_1) - (j_6) hold then there exists at least a solution $u \in W^{1,\infty}(0,T;V)$ to Problem

256

(ii) If (j_1) - (j_7) hold then there exists a unique solution $u \in W^{1,\infty}(0,T;V)$ to Problem P.

(iii) Under the assumptions (j_1) - (j_6) and (j_8) there exists a unique solution $u = u(f, u_0) \in W^{1,\infty}(0,T;V)$ to Problem P and the mapping $(f, u_0) \mapsto u$ is Lipschitz continuous from $W^{1,\infty}(0,T;V) \times V$ to $L^{\infty}(0,T;V)$.

The proof of Theorem 1 is based on a time discretization method. We resume here the main ingredients of the proof: first, Problem P is replaced by a sequence of quasivariational inequalities which have a unique solution; then, the discrete solution is interpolated in time and, using compactness and lower semicontinuity arguments, the existence of a solution to Problem P is derived; the uniqueness of the solution as well as its Lipschitz continuous dependence with respect to the data is proved by using Gronwall-type arguments.

3. Application of Theorem 1 to an antiplane problem

The rest of the paper deals with antiplane contact problems, specifically the contact between a cylinder and a rigid foundation. The cylinder is supposed to have the generators sufficiently long, parallel with the x_3 -axis of a fixed Cartesian coordinate system $Ox_1x_2x_3$ in \mathbb{R}^3 with a regular, bounded cross-section Ω in the x_1, x_2 -plane. The boundary Γ of Ω is divided into three disjoint measurable parts $\Gamma_1, \Gamma_2, \Gamma_3$ with $|\Gamma_1| > 0$. The body is fixed on $\Gamma_1 \times (-\infty, +\infty)$. The contact between the cylinder and the foundation is frictional, bilateral on $\Gamma_3 \times (-\infty, +\infty)$.

Assume that in the time interval [0, T] the cylinder is submitted to volume forces of density $\mathbf{f}_0 = (0, 0, f_0) : \Omega \times (0, T) \to \mathbb{R}^3$ and surface tractions of density $\mathbf{f}_2 = (0, 0, f_2) : \Gamma_2 \times (0, T) \to \mathbb{R}^3$. The forces give rise to a deformation of the cylinder whose displacement \boldsymbol{u} is parallel to the generators, independent on the axial coordinate, i.e. $\boldsymbol{u} = (0, 0, u)$, with $\boldsymbol{u} : \Omega \times (0, T) \to \mathbb{R}$. Denote $\boldsymbol{\nu}$ the unit normal on $\Gamma \times (-\infty, +\infty)$. We have $\boldsymbol{\nu} = (\nu_1, \nu_2, 0)$, with $\nu_1, \nu_2 : \Gamma \to \mathbb{R}$. We use the notation $\partial_{\nu} \boldsymbol{u} = (\partial u / \partial x_1)\nu_1 + (\partial u / \partial x_2)\nu_2$.

Suppose now the cylinder elastic, homogeneous, isotropic, then it follows the law $\boldsymbol{\sigma} = \lambda(\operatorname{tr} \boldsymbol{\varepsilon}(\boldsymbol{u}))\boldsymbol{I} + 2\mu\boldsymbol{\varepsilon}(\boldsymbol{u})$, where $\boldsymbol{\varepsilon}(\boldsymbol{u}) = (\varepsilon_{ij}(\boldsymbol{u}))$ is the infinitesimal strain tensor, that is $\varepsilon_{ij}(\boldsymbol{u}) = (1/2)(\partial u_i/\partial x_j + \partial u_j/\partial x_i)$, i, j = 1, 2, 3, tr $\boldsymbol{\varepsilon}(\boldsymbol{u}) = \varepsilon_{ii}(\boldsymbol{u})$, \boldsymbol{I} is the unit tensor in \mathbb{R}^3 , $\lambda > 0$ and $\mu > 0$ are the Lamé coefficients. The law permits to determine the stress field $\boldsymbol{\sigma}$ when the displacement \boldsymbol{u} is known and to consider the following contact problem.

P.

Problem P_0 . Find the displacement field $u: \Omega \times [0,T] \to \mathbb{R}$ such that

$$\begin{split} & \mu \Delta u + f_0 = 0 \quad on \; \Omega \times (0,T), \\ & u = 0 \quad on \; \Gamma_1 \times (0,T), \\ & \mu \partial_\nu u = f_2 \quad on \; \Gamma_2 \times (0,T), \\ & \partial_\nu u \leq 0 \Rightarrow \begin{cases} & \mu \partial_\nu u \geq g_1(|u|) \\ & \mu \partial_\nu u \geq g_1(|u|) \Rightarrow \dot{u} = 0 \\ & \mu \partial_\nu u = g_1(|u|) \Rightarrow \exists \beta > 0 \; a.e. \; on \; \Gamma_3 \; such \; that \; \mu \partial_\nu u = -\beta \dot{u} \\ & \mu \partial_\nu u \leq g_2(|u|) \\ & \mu \partial_\nu u \leq g_2(|u|) \Rightarrow \dot{u} = 0 \\ & \mu \partial_\nu u = g_2(|u|) \Rightarrow \exists \beta > 0 \; a.e. \; on \; \Gamma_3 \; such \; that \; \mu \partial_\nu u = -\beta \dot{u} \\ & on \; \Gamma_3 \times (0,T), \end{cases} \end{split}$$

 $u(0) = u_0 \quad on \ \Omega.$

Here u_0 is given and $g_1, g_2: \Gamma_3 \times \mathbb{R}_+ \to \mathbb{R}$ are assumed to satisfy

$$\begin{cases} g_1(x,r) \le 0, \ g_2(x,r) \ge 0 \quad \text{a.e.} \quad x \in \Gamma_3, \ \forall r \in \mathbb{R}_+, \\ g_i(\cdot,r) \text{ is Lebesgue measurable on } \Gamma_3 \quad \forall r \in \mathbb{R}_+, \quad g_i(\cdot,0) \in L^2(\Gamma_3), \\ |g_i(x,r_1) - g_i(x,r_2)| \le L_i |r_1 - r_2| \quad \text{a.e.} \quad x \in \Gamma_3, \ \forall r_1, r_2 \in \mathbb{R}_+, \end{cases}$$
(1)

for some positive constants L_i , where i = 1, 2.

Consider the Hilbert space

$$V = \{ v \in H^1(\Omega) \, | \, v = 0 \text{ on } \Gamma_1 \}, \quad (u, v)_V = \int_{\Omega} \nabla u \cdot \nabla v \, dx \quad \forall u, v \in V.$$

By Sobolev's trace theorem we find a constant $C_0 = C_0(\Omega, \Gamma_1, \Gamma_3) > 0$ such that

$$\|v\|_{L^2(\Gamma_3)} \le C_0 \|v\|_V \quad \forall v \in V$$

In view of (1), let the functional $j: V \times V \to I\!\!R$ defined by

$$j(u,v) = \int_{\Gamma_3} [g_2(|u|)v^- - g_1(|u|)v^+] \, da \quad \forall u, v \in V,$$
(2)

where $v^+ = \max\{v, 0\}, v^- = \max\{-v, 0\}$. Assume that

$$f_0 \in W^{1,\infty}(0,T;L^2(\Omega)), \quad f_2 \in W^{1,\infty}(0,T;L^2(\Gamma_2)),$$
(3)

(4)

$$u_0 \in V, \quad \mu(u_0, v)_V + j(u_0, v) \ge (f(0), v)_V \quad \forall v \in V.$$

By Riesz's representation theorem, let the function $f:[0,T] \to V$ given by

$$(f(t), v)_V = \int_{\Omega} f_0(t) v \, dx + \int_{\Gamma_2} f_2(t) v \, da \quad \forall v \in V, \ t \in [0, T].$$

We are led to the following weak formulation of Problem P_0 .

Problem P'_0 . Find a displacement field $u: [0,T] \to V$ such that

$$\begin{cases} \mu(u(t), v - \dot{u}(t))_V + j(u(t), v) - j(u(t), \dot{u}(t)) \ge (f(t), v - \dot{u}(t))_V \\ \forall v \in V, \ a.e. \ t \in (0, T), \\ u(0) = u_0. \end{cases}$$

We have the following result.

Theorem 2. [3] Suppose that conditions (3) and (4) hold.

258

(i)' Under the assumption (1), if in addition $L_1 + L_2 < \mu/C_0^2$, then there exists at least a solution u for Problem P'_0 , which satisfies $u \in W^{1,\infty}(0,T;V)$.

(ii)' If $g_1 : \Gamma_3 \to \mathbb{R}_-$ and $g_2 : \Gamma_3 \to \mathbb{R}_+$, $g_1, g_2 \in L^2(\Gamma_3)$, there exists a unique solution $u \in W^{1,\infty}(0,T;V)$ for Problem P'_0 . Moreover, the mapping $(f, u_0) \mapsto u$ is Lipschitzian from $W^{1,\infty}(0,T;V) \times V$ to $L^{\infty}(0,T;V)$.

Proof. (Sketch) Note that conditions (i_1) - (i_3) are satisfied for the data entering Problem P'_0 (see (3) and (4)). The hypotheses imposed on functions g_1, g_2 in part (i)'of Theorem 2 imply that conditions (j_1) - (j_6) are verified for the functional j in (2) and allow the application of Theorem 1, (i). The particular assumption in part (ii)'shows directly that (j_1) - (j_8) are satisfied, so parts (ii) and (iii) in Theorem 1 can be applied.

4. A CONVERGENCE RESULT

In this section we see that in a particular situation for g_1, g_2 the solution of Problem P'_0 (that is the weak solution of the elastic Problem P_0) can be obtained as a limit of weak solutions of viscoelastic problems. For each $\theta > 0$ consider the following problem.

Problem P_{θ} . Find a displacement field $u_{\theta} : [0,T] \to V$ such that

$$\begin{cases} \theta(\dot{u}_{\theta}(t), v - \dot{u}_{\theta}(t))_{V} + \mu(u_{\theta}(t), v - \dot{u}_{\theta}(t))_{V} + j(\int_{0}^{t} |\dot{u}_{\theta}(s)| ds, v) \\ -j(\int_{0}^{t} |\dot{u}_{\theta}(s)| ds, \dot{u}_{\theta}(t)) \ge (f(t), v - \dot{u}_{\theta}(t))_{V} \quad \forall v \in V, \ a.e. \ t \in (0, T), \\ u_{\theta}(0) = u_{0}. \end{cases}$$

Problem P_{θ} arises as the variational formulation of a mechanical problem which is analogous to Problem P_0 with two differences: the law is viscoelastic, that is $\boldsymbol{\sigma} = 2\theta\boldsymbol{\varepsilon}(\boldsymbol{u}) + \lambda(\operatorname{tr} \boldsymbol{\varepsilon}(\boldsymbol{u}))\boldsymbol{I} + 2\mu\boldsymbol{\varepsilon}(\boldsymbol{u})$, and in the boundary condition on $\Gamma_3 \times (0,T)$ one sets $g := g_2 = -g_1$ and $|\boldsymbol{u}|$ is replaced by $\int_0^t |\dot{\boldsymbol{u}}(s)| ds$. The existence and uniqueness of the solution $u_{\theta} \in W^{1,\infty}(0,T;V)$ to Problem P_{θ} is provided in [2] and hold under the following hypotheses: assumption (1) becomes a corresponding condition for g, (3) is replaced by $f_0 \in L^{\infty}(0,T;L^2(\Omega)), f_2 \in L^{\infty}(0,T;L^2(\Gamma_2))$ and in place of (4) we take $u_0 \in V$. The argument relies on Banach's fixed point theorem in the space $L^{\infty}(0,T;V)$.

Our convergence result is now stated. If $g \in L^{\infty}(\Gamma_3)$ one obtains the corresponding result in [2].

Theorem 3. Assume $g: \Gamma_3 \to \mathbb{R}_+$, $g \in L^2(\Gamma_3)$, (3) and (4) verified. Then $u_\theta \to u$ in C([0,T]; V) as $\theta \to 0^+$, where u_θ , u are the solutions to Problems P_θ , P'_0 , respectively, for $j: V \to \mathbb{R}$, $j(v) = \int_{\Gamma_a} g|v| da$, $\forall v \in V$.

Proof. (Sketch) Using the fact that $u_{\theta}, u \in W^{1,\infty}(0,T;V)$ are the unique solutions to Problems P_{θ}, P'_0 , respectively, implies

$$\mu \frac{d}{dt} \| u(t) - u_{\theta}(t) \|_{V}^{2} \le 2\theta (\dot{u}_{\theta}(t), \dot{u}(t) - \dot{u}_{\theta}(t))_{V} \quad \text{a.e. } t \in (0, T).$$

By integration we are led to

$$\mu \| u_{\theta}(s) - u(s) \|_{V}^{2} \le \frac{\theta}{2} \int_{0}^{T} \| \dot{u}(t) \|_{V}^{2} dt \quad \forall s \in [0, T],$$

which yields the result.

References

- [1] W. Han and M. Sofonea, *Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity*, American Mathematical Society International Press, to appear.
- [2] T.-V. Hoarau-Mantel and A. Matei, Analysis of a viscoelastic antiplane contact problem with slip dependent friction, Int. J. Appl. Math. and Comp. Sci., to appear.
- [3] A. Matei, V. V. Motreanu and M. Sofonea, A quasistatic antiplane contact problem with slip dependent friction, Adv. Nonlinear Var. Inequal. 4 (2001), 1-21.
- [4] D. Motreanu and M. Sofonea, Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstract and Applied Analysis 4 (1999), 255–279.