RESULTS ON QUASISTATIC ANTIPLANE CONTACT PROBLEMS WITH SLIP DEPENDENT FRICTION

A. MATEI*, V.V. MOTREANU**
* Craiova University, Department of Matematics 1100 Craiova, Romania
E-mail: AndaluziaMatei@k.ro
** Université de Perpignan, Laboratoire de Théorie des Systèmes 66860 Perpignan, France
E-mail: viorica@univ-perp.fr

Abstract

In this paper we present same recent results on quasistatic antiplane contact problems, where general versions of Tresca's friction law are considered. Keywords: evolution problem, quasivariational inequality, elastic and viscoelastic materials, antiplane contact problem. AMS Subject Classification: 47J35, 49J40, 74M15, 74D10.

1. Introduction

This paper is a survey on our recent results on quasistatic antiplane contact problems, where general versions of Tresca's friction law (see [1] for details) are considered. First, we recall in Section 2 an abstract result on evolution variational inequalities obtained in [4], then we apply it in Section 3 in the study of an elastic contact problem with slip dependent friction and provide a result obtained in [3]. Further, in Section 4 we slightly generalize a result obtained in [2] which expresses the convergence of the viscoelastic solution to the solution of the elastic problem studied in Section 3.

2. An abstract existence and uniqueness result in [4]

In this section we recall an existence and uniqueness result which was established in [4] in the study of the following evolution problem.
Problem P. Find $u:[0, T] \rightarrow V$ such that

$$
\begin{gathered}
a(u(t), v-\dot{u}(t))+j(u(t), v)-j(u(t), \dot{u}(t)) \geq(f(t), v-\dot{u}(t))_{V} \\
\forall v \in V, \text { a.e. } t \in(0, T) \\
u(0)=u_{0} .
\end{gathered}
$$

Here, V denotes a real Hilbert space and suppose that
$\left(i_{1}\right) a: V \times V \rightarrow \mathbb{R}$ is a bilinear, continuous, symmetric form for which there exists $m>0$ such that $a(v, v) \geq m\|v\|_{V}^{2}, \forall v \in V$.
$\left(i_{2}\right) j: V \times V \rightarrow \mathbb{R}$ is positively homogeneous and subadditive with respect to the second argument.
$\left(i_{3}\right) f \in W^{1, \infty}(0, T ; V), u_{0} \in V, a\left(u_{0}, v\right)+j\left(u_{0}, v\right) \geq(f(0), v)_{V} \quad \forall v \in V$.
Consider the properties below.
$\left(j_{1}\right)$ For every sequence $\left\{u_{n}\right\} \subset V$ with $\left\|u_{n}\right\|_{V} \rightarrow \infty$, every sequence $\left\{t_{n}\right\} \subset[0,1]$ and each $\bar{u} \in V$, one has

$$
\liminf _{n \rightarrow \infty}\left[\frac{1}{\left\|u_{n}\right\|_{V}^{2}} j_{2}^{\prime}\left(t_{n} u_{n}, u_{n}-\bar{u} ;-u_{n}\right)\right]<m
$$

$\left(j_{2}\right)$ For every sequence $\left\{u_{n}\right\} \subset V$ with $\left\|u_{n}\right\|_{V} \rightarrow \infty$, every bounded sequence $\left\{\eta_{n}\right\} \subset V$ and each $\bar{u} \in V$ one has

$$
\liminf _{n \rightarrow \infty}\left[\frac{1}{\left\|u_{n}\right\|_{V}^{2}} j_{2}^{\prime}\left(\eta_{n}, u_{n}-\bar{u} ;-u_{n}\right)\right]<m
$$

$\left(j_{3}\right)$ For all sequences $\left\{u_{n}\right\} \subset V$ and $\left\{\eta_{n}\right\} \subset V$ such that $u_{n} \rightharpoonup u \in V, \eta_{n} \rightharpoonup \eta \in V$ weakly in V and for every $v \in V$, the inequality below holds

$$
\limsup _{n \rightarrow \infty}\left[j\left(\eta_{n}, v\right)-j\left(\eta_{n}, u_{n}\right)\right] \leq j(\eta, v)-j(\eta, u)
$$

$\left(j_{4}\right)$ There exists $c_{0} \in(0, m)$ such that

$$
j(u, v-u)-j(v, v-u) \leq c_{0}\|u-v\|_{V}^{2} \quad \forall u, v \in V
$$

$\left(j_{5}\right)$ There exist two functions $a_{1}: V \rightarrow \mathbb{R}$ and $a_{2}: V \rightarrow \mathbb{R}$ which map bounded sets in V into bounded sets in \mathbb{R} such that $a_{1}\left(0_{V}\right)<m-c_{0}$ and

$$
|j(\eta, u)| \leq a_{1}(\eta)\|u\|_{V}^{2}+a_{2}(\eta) \quad \forall \eta, u \in V
$$

$\left(j_{6}\right)$ For every sequence $\left\{\eta_{n}\right\} \subset V$ with $\eta_{n} \rightharpoonup \eta \in V$ weakly in V and every bounded sequence $\left\{u_{n}\right\} \subset V$ one has $\lim _{n \rightarrow \infty}\left[j\left(\eta_{n}, u_{n}\right)-j\left(\eta, u_{n}\right)\right]=0$.
$\left(j_{7}\right)$ For every $s \in(0, T]$ and every functions $u, v \in W^{1, \infty}(0, T ; V)$ with $u(0)=v(0)$, $u(s) \neq v(s)$, the inequality below holds

$$
\int_{0}^{s}[j(u(t), \dot{v}(t))-j(u(t), \dot{u}(t))+j(v(t), \dot{u}(t))-j(v(t), \dot{v}(t))] d t<\frac{m}{2}\|u(s)-v(s)\|_{V}^{2}
$$

(j_{8}) There exists $\alpha \in\left(0, \frac{m}{2}\right)$ such that for every $s \in(0, T]$ and every functions $u, v \in W^{1, \infty}(0, T ; V)$ with $u(s) \neq v(s)$, the inequality below holds

$$
\int_{0}^{s}[j(u(t), \dot{v}(t))-j(u(t), \dot{u}(t))+j(v(t), \dot{u}(t))-j(v(t), \dot{v}(t))] d t<\alpha\|u(s)-v(s)\|_{V}^{2}
$$

In $\left(j_{1}\right)-\left(j_{2}\right), j_{2}^{\prime}$ denotes the directional derivative with respect to the second variable, i.e.

$$
j_{2}^{\prime}(\eta, u ; v)=\lim _{\lambda \rightarrow 0^{+}} \frac{1}{\lambda}[j(\eta, u+\lambda v)-j(\eta, u)] \quad \forall \eta, u, v \in V
$$

which exists since $j(\eta, \cdot): V \rightarrow \mathbb{R}$ is a convex functional for all $\eta \in V$.
In the study of Problem P the following result was obtained.
Theorem 1. (D. Motreanu and M. Sofonea [4]) Assume (i_{1})-(i_{3}).
(i) If $\left(j_{1}\right)-\left(j_{6}\right)$ hold then there exists at least a solution $u \in W^{1, \infty}(0, T ; V)$ to Problem
P.
(ii) If $\left(j_{1}\right)-\left(j_{7}\right)$ hold then there exists a unique solution $u \in W^{1, \infty}(0, T ; V)$ to Problem P.
(iii) Under the assumptions $\left(j_{1}\right)-\left(j_{6}\right)$ and $\left(j_{8}\right)$ there exists a unique solution $u=$ $u\left(f, u_{0}\right) \in W^{1, \infty}(0, T ; V)$ to Problem P and the mapping $\left(f, u_{0}\right) \longmapsto u$ is Lipschitz continuous from $W^{1, \infty}(0, T ; V) \times V$ to $L^{\infty}(0, T ; V)$.

The proof of Theorem 1 is based on a time discretization method. We resume here the main ingredients of the proof: first, Problem P is replaced by a sequence of quasivariational inequalities which have a unique solution; then, the discrete solution is interpolated in time and, using compactness and lower semicontinuity arguments, the existence of a solution to Problem P is derived; the uniqueness of the solution as well as its Lipschitz continuous dependence with respect to the data is proved by using Gronwall-type arguments.

3. Application of Theorem 1 to an antiplane problem

The rest of the paper deals with antiplane contact problems, specifically the contact between a cylinder and a rigid foundation. The cylinder is supposed to have the generators sufficiently long, parallel with the x_{3}-axis of a fixed Cartesian coordinate system $O x_{1} x_{2} x_{3}$ in \mathbb{R}^{3} with a regular, bounded cross-section Ω in the x_{1}, x_{2}-plane. The boundary Γ of Ω is divided into three disjoint measurable parts $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ with $\left|\Gamma_{1}\right|>0$. The body is fixed on $\Gamma_{1} \times(-\infty,+\infty)$. The contact between the cylinder and the foundation is frictional, bilateral on $\Gamma_{3} \times(-\infty,+\infty)$.

Assume that in the time interval $[0, T]$ the cylinder is submitted to volume forces of density $\boldsymbol{f}_{0}=\left(0,0, f_{0}\right): \Omega \times(0, T) \rightarrow \mathbb{R}^{3}$ and surface tractions of density $\boldsymbol{f}_{2}=$ $\left(0,0, f_{2}\right): \Gamma_{2} \times(0, T) \rightarrow \mathbb{R}^{3}$. The forces give rise to a deformation of the cylinder whose displacement \boldsymbol{u} is parallel to the generators, independent on the axial coordinate, i.e. $\boldsymbol{u}=(0,0, u)$, with $u: \Omega \times(0, T) \rightarrow \mathbb{R}$. Denote $\boldsymbol{\nu}$ the unit normal on $\Gamma \times(-\infty,+\infty)$. We have $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, 0\right)$, with $\nu_{1}, \nu_{2}: \Gamma \rightarrow \mathbb{R}$. We use the notation $\partial_{\nu} u=\left(\partial u / \partial x_{1}\right) \nu_{1}+$ $\left(\partial u / \partial x_{2}\right) \nu_{2}$.

Suppose now the cylinder elastic, homogeneous, isotropic, then it follows the law $\boldsymbol{\sigma}=\lambda(\operatorname{tr} \boldsymbol{\varepsilon}(\boldsymbol{u})) \boldsymbol{I}+2 \mu \boldsymbol{\varepsilon}(\boldsymbol{u})$, where $\boldsymbol{\varepsilon}(\boldsymbol{u})=\left(\varepsilon_{i j}(\boldsymbol{u})\right)$ is the infinitesimal strain tensor, that is $\varepsilon_{i j}(\boldsymbol{u})=(1 / 2)\left(\partial u_{i} / \partial x_{j}+\partial u_{j} / \partial x_{i}\right), i, j=1,2,3, \operatorname{tr} \boldsymbol{\varepsilon}(\boldsymbol{u})=\varepsilon_{i i}(\boldsymbol{u}), \boldsymbol{I}$ is the unit tensor in $\mathbb{R}^{3}, \lambda>0$ and $\mu>0$ are the Lamé coefficients. The law permits to determine the stress field $\boldsymbol{\sigma}$ when the displacement \boldsymbol{u} is known and to consider the following contact problem.

Problem P_{0}. Find the displacement field $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \mu \Delta u+f_{0}=0 \text { on } \Omega \times(0, T), \\
& u=0 \text { on } \Gamma_{1} \times(0, T), \\
& \mu \partial_{\nu} u=f_{2} \text { on } \Gamma_{2} \times(0, T), \\
& \partial_{\nu} u \leq 0 \Rightarrow\left\{\begin{array}{l}
\mu \partial_{\nu} u \geq g_{1}(|u|) \\
\mu \partial_{\nu} u>g_{1}(|u|) \Rightarrow \dot{u}=0 \\
\mu \partial_{\nu} u=g_{1}(|u|) \Rightarrow \exists \beta>0 \text { a.e. on } \Gamma_{3} \text { such that } \mu \partial_{\nu} u=-\beta \dot{u} \\
\mu \partial_{\nu} u \leq g_{2}(|u|) \\
\mu \partial_{\nu} u<g_{2}(|u|) \Rightarrow \dot{u}=0 \\
\mu \partial_{\nu} u=g_{2}(|u|) \Rightarrow \exists \beta>0 \text { a.e. on } \Gamma_{3} \text { such that } \mu \partial_{\nu} u=-\beta \dot{u} \\
\partial_{\nu} u \geq 0 \Rightarrow \Gamma_{3} \times(0, T),
\end{array}\right. \\
& u(0)=u_{0} \text { on } \Omega .
\end{aligned}
$$

Here u_{0} is given and $g_{1}, g_{2}: \Gamma_{3} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ are assumed to satisfy

$$
\left\{\begin{array}{l}
g_{1}(x, r) \leq 0, g_{2}(x, r) \geq 0 \text { a.e. } x \in \Gamma_{3}, \forall r \in \mathbb{R}_{+}, \tag{1}\\
g_{i}(\cdot, r) \text { is Lebesgue measurable on } \Gamma_{3} \forall r \in \mathbb{R}_{+}, g_{i}(\cdot, 0) \in L^{2}\left(\Gamma_{3}\right), \\
\left|g_{i}\left(x, r_{1}\right)-g_{i}\left(x, r_{2}\right)\right| \leq L_{i}\left|r_{1}-r_{2}\right| \text { a.e. } x \in \Gamma_{3}, \forall r_{1}, r_{2} \in \mathbb{R}_{+},
\end{array}\right.
$$

for some positive constants L_{i}, where $i=1,2$.
Consider the Hilbert space

$$
V=\left\{v \in H^{1}(\Omega) \mid v=0 \quad \text { on } \Gamma_{1}\right\}, \quad(u, v)_{V}=\int_{\Omega} \nabla u \cdot \nabla v d x \quad \forall u, v \in V .
$$

By Sobolev's trace theorem we find a constant $C_{0}=C_{0}\left(\Omega, \Gamma_{1}, \Gamma_{3}\right)>0$ such that

$$
\|v\|_{L^{2}\left(\Gamma_{3}\right)} \leq C_{0}\|v\|_{V} \quad \forall v \in V
$$

In view of (1), let the functional $j: V \times V \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
j(u, v)=\int_{\Gamma_{3}}\left[g_{2}(|u|) v^{-}-g_{1}(|u|) v^{+}\right] d a \quad \forall u, v \in V \tag{2}
\end{equation*}
$$

where $v^{+}=\max \{v, 0\}, v^{-}=\max \{-v, 0\}$. Assume that

$$
\begin{align*}
& f_{0} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right), \quad f_{2} \in W^{1, \infty}\left(0, T ; L^{2}\left(\Gamma_{2}\right)\right), \tag{3}\\
& u_{0} \in V, \quad \mu\left(u_{0}, v\right)_{V}+j\left(u_{0}, v\right) \geq(f(0), v)_{V} \quad \forall v \in V . \tag{4}
\end{align*}
$$

By Riesz's representation theorem, let the function $f:[0, T] \rightarrow V$ given by

$$
(f(t), v)_{V}=\int_{\Omega} f_{0}(t) v d x+\int_{\Gamma_{2}} f_{2}(t) v d a \quad \forall v \in V, t \in[0, T] .
$$

We are led to the following weak formulation of Problem P_{0}.
Problem P_{0}^{\prime}. Find a displacement field $u:[0, T] \rightarrow V$ such that

$$
\begin{cases}\mu(u(t), v-\dot{u}(t))_{V}+j(u(t), v)-j(u(t), \dot{u}(t)) \geq(f(t), v-\dot{u}(t))_{V} \\ u(0)=u_{0} & \forall v \in V, \text { a.e. } t \in(0, T)\end{cases}
$$

We have the following result.
Theorem 2. [3] Suppose that conditions (3) and (4) hold.
$(i)^{\prime}$ Under the assumption (1), if in addition $L_{1}+L_{2}<\mu / C_{0}^{2}$, then there exists at least a solution u for Problem P_{0}^{\prime}, which satisfies $u \in W^{1, \infty}(0, T ; V)$.
(ii)' If $g_{1}: \Gamma_{3} \rightarrow \mathbb{R}_{-}$and $g_{2}: \Gamma_{3} \rightarrow \mathbb{R}_{+}, g_{1}, g_{2} \in L^{2}\left(\Gamma_{3}\right)$, there exists a unique solution $u \in W^{1, \infty}(0, T ; V)$ for Problem P_{0}^{\prime}. Moreover, the mapping $\left(f, u_{0}\right) \longmapsto u$ is Lipschitzian from $W^{1, \infty}(0, T ; V) \times V$ to $L^{\infty}(0, T ; V)$.
Proof. (Sketch) Note that conditions $\left(i_{1}\right)-\left(i_{3}\right)$ are satisfied for the data entering Problem P_{0}^{\prime} (see (3) and (4)). The hypotheses imposed on functions g_{1}, g_{2} in part $(i)^{\prime}$ of Theorem 2 imply that conditions $\left(j_{1}\right)-\left(j_{6}\right)$ are verified for the functional j in (2) and allow the application of Theorem 1, (i). The particular assumption in part (iii)' shows directly that $\left(j_{1}\right)-\left(j_{8}\right)$ are satisfied, so parts (ii) and (iii) in Theorem 1 can be applied.

4. A convergence result

In this section we see that in a particular situation for g_{1}, g_{2} the solution of Problem P_{0}^{\prime} (that is the weak solution of the elastic Problem P_{0}) can be obtained as a limit of weak solutions of viscoelastic problems. For each $\theta>0$ consider the following problem.
Problem P_{θ}. Find a displacement field $u_{\theta}:[0, T] \rightarrow V$ such that

$$
\left\{\begin{array}{l}
\theta\left(\dot{u}_{\theta}(t), v-\dot{u}_{\theta}(t)\right)_{V}+\mu\left(u_{\theta}(t), v-\dot{u}_{\theta}(t)\right)_{V}+j\left(\int_{0}^{t}\left|\dot{u}_{\theta}(s)\right| d s, v\right) \\
-j\left(\int_{0}^{t}\left|\dot{u}_{\theta}(s)\right| d s, \dot{u}_{\theta}(t)\right) \geq\left(f(t), v-\dot{u}_{\theta}(t)\right)_{V} \quad \forall v \in V, \text { a.e. } t \in(0, T), \\
u_{\theta}(0)=u_{0} .
\end{array}\right.
$$

Problem P_{θ} arises as the variational formulation of a mechanical problem which is analogous to Problem P_{0} with two differences: the law is viscoelastic, that is $\boldsymbol{\sigma}=$ $2 \theta \varepsilon(\dot{\boldsymbol{u}})+\lambda(\operatorname{tr} \varepsilon(\boldsymbol{u})) \boldsymbol{I}+2 \mu \varepsilon(\boldsymbol{u})$, and in the boundary condition on $\Gamma_{3} \times(0, T)$ one sets $g:=g_{2}=-g_{1}$ and $|u|$ is replaced by $\int_{0}^{t}|\dot{u}(s)| d s$. The existence and uniqueness of the solution $u_{\theta} \in W^{1, \infty}(0, T ; V)$ to Problem P_{θ} is provided in [2] and hold under the following hypotheses: assumption (1) becomes a corresponding condition for g, (3) is replaced by $f_{0} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), f_{2} \in L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{2}\right)\right)$ and in place of (4) we take $u_{0} \in V$. The argument relies on Banach's fixed point theorem in the space $L^{\infty}(0, T ; V)$.

Our convergence result is now stated. If $g \in L^{\infty}\left(\Gamma_{3}\right)$ one obtains the corresponding result in [2].
Theorem 3. Assume $g: \Gamma_{3} \rightarrow \mathbb{R}_{+}, g \in L^{2}\left(\Gamma_{3}\right)$, (3) and (4) verified. Then $u_{\theta} \rightarrow u$ in $C([0, T] ; V)$ as $\theta \rightarrow 0^{+}$, where u_{θ}, u are the solutions to Problems $P_{\theta}, P_{0}^{\prime}$, respectively, for $j: V \rightarrow \mathbb{R}, j(v)=\int_{\Gamma_{3}} g|v| d a, \forall v \in V$.
Proof. (Sketch) Using the fact that $u_{\theta}, u \in W^{1, \infty}(0, T ; V)$ are the unique solutions to Problems $P_{\theta}, P_{0}^{\prime}$, respectively, implies

$$
\mu \frac{d}{d t}\left\|u(t)-u_{\theta}(t)\right\|_{V}^{2} \leq 2 \theta\left(\dot{u}_{\theta}(t), \dot{u}(t)-\dot{u}_{\theta}(t)\right)_{V} \quad \text { a.e. } t \in(0, T)
$$

By integration we are led to

$$
\mu\left\|u_{\theta}(s)-u(s)\right\|_{V}^{2} \leq \frac{\theta}{2} \int_{0}^{T}\|\dot{u}(t)\|_{V}^{2} d t \quad \forall s \in[0, T]
$$

which yields the result.

References

[1] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society International Press, to appear.
[2] T.-V. Hoarau-Mantel and A. Matei, Analysis of a viscoelastic antiplane contact problem with slip dependent friction, Int. J. Appl. Math. and Comp. Sci., to appear.
[3] A. Matei, V. V. Motreanu and M. Sofonea, A quasistatic antiplane contact problem with slip dependent friction, Adv. Nonlinear Var. Inequal. 4 (2001), 1-21.
[4] D. Motreanu and M. Sofonea, Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstract and Applied Analysis 4 (1999), 255-279.

