ON SOME GRONWALL-BIHARI-WENDORFF-TYPE INEQUALITIES

NICOLAIE LUNGU

Department of Mathematics
Technical University of Cluj-Napoca
3400 Cluj-Napoca, Romania

Abstract

This paper presents certain considerations on some lemmas of Gronwall-Bihari-Wendorff type, which follow from abstract Gronwall lemma for Picard operators. Keywords: Picard operator, Gronwall lemma.

AMS Subject Classification: 47H04, 54H25.

1. Introduction

This paper presents certain considerations on some lemmas of Gronwall-BihariWendorff type, which follow from abstract Gronwall lemma for Picard operators ([9], [10]). By this method certain generalizations for hyperbolic differential inequalities of Gronwall-Wendorff's classical inequalities are presented; these inequalities involve the Riemann function for a linear hyperbolic operator.

2. Operatorial inequalities

In what follows we present some operatorial inequalities which are deduced from abstract Gronwall lemma ([9], [10], [11]).

Definition 1. ([9], [10]) Let (X, d) be a metric space. An operator $f: X \rightarrow X$ is called a Picard operator if there exists $x^{*} \in X$ such that
(i) $F_{f}=\left\{x^{*}\right\}$
(ii) $\left(f^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*}, for all $x_{0} \in X$.

Definition 2. ([9], [10]) Let (X, d) be a metric space. An operator $f: X \rightarrow X$ is said to be a weakly Picard operator if the sequence $\left(f^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges for all $x_{0} \in X$ and the limit (which may depend on x_{0}) is a fixed point of f.

Lemma 1. (Abstract Gronwall lemma; [10], [11]) Let (X, d) be an ordered metric space and $A: X \rightarrow X$ an operator.

We suppose that:
(i) A is a Picard operator
(ii) A is monotone increasing.

If x_{A}^{*} is the fixed point of the operator A, then
(a) $x \leq A(x) \Rightarrow x \leq x_{A}^{*}$
(b) $x \geq A(x) \Rightarrow x \geq x_{A}^{*}$.

The following lemmas follow from Lemma 1.
Lemma 2. (Stetsenko, Shaaban [13]) Let E be a semiordered Banach space. If for an element $u(v)$ we have

$$
u \leq A u+f \quad(v \geq A v+f)
$$

where f is a fixed element and $A: E \rightarrow E$ an increasing operator.
$\left(U_{1}\right)$: If the equation $y=A y+f$ has the unique solution y^{*}, which is the limit of the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ defined by $y_{n+1}=A y_{n}+f$, then

$$
u \leq y^{*} \quad\left(v \geq y^{*}\right)
$$

Proof. Consider the operator $B: X \rightarrow X, x \rightarrow A x+f$, Because the condition $\left(U_{1}\right)$ is fulfilled, the operator B is Picard and we have

$$
u \leq B(u)
$$

Then Lemma 2 follows from the abstract Gronwall lemma.
Lemma 3. (Zeidler [11], [14]) Let $(X,\|\cdot\|, \leq)$ be an ordered Banach space and A : $X \rightarrow X$ be a continuous, linear and positive operator, with spectral radius $r(A)<1$. Let $x, y, g \in X$. Then

$$
x \leq A(x)+g
$$

and

$$
y=A(y)+g
$$

always implies

$$
x \leq y
$$

Proof. Since $r(A)<1$, the operator

$$
B: X \rightarrow X, \quad x \rightarrow A(x)+g
$$

is a Picard operator. As A is linear and positive, A is increasing, and Lemma 3 follows from the abstract Gronwall lemma (Lemma 1).

Lemma 4. (Zima [14]) Let X be a semiordered Banach space. Let $A: X \rightarrow X$, be a linearly bounded, subadditive and increasing operator such that

$$
\sum_{k=0}^{\infty}\left\|A^{k}\right\|<\infty
$$

Let $g, x \in X$ and $x<g+A x$.
Then

$$
x<\sum_{k=0}^{\infty} A^{k} g
$$

Proof. Consider the operator $B: X \rightarrow X, x \rightarrow A x+g$. Because A is linearly bounded, subadditive, increasing operator and $\sum_{k=0}^{\infty}\left\|A^{k}\right\|<\infty$, the operator B is

Picard. If x_{B}^{*} is the fixed point of B and

$$
S_{n} x=\sum_{k=0}^{n-1} A^{k} g+A^{n} x
$$

then

$$
\lim _{n \rightarrow \infty} S_{n} x=\sum_{k=0}^{\infty} A^{k} g=x_{B}^{*}
$$

and $x<x_{B}^{*}$. (Here $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$, and $x<S_{n} x$).
Lemma 5. (Martynyuk, Lakshmikantham, Leela [3]) Let X be a semiordered, complet metric space. If $x_{n} \in X, x_{n} \leq x_{n+1}$ for all $n \geq 1$ and exists $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, then $x_{n} \leq x_{0}$. Let $T: X \rightarrow X$ be an increasing operator and for a $m \in \mathbb{N}$, T^{m} is a contraction.

If x_{0} is unique fixed point of T, then

$$
x \leq T x \Rightarrow x \leq x_{0}
$$

Proof. Since T^{m} is a contraction and T is increasing operator and has a unique fixed point x_{0}, then T is a Picard operator and Lemma 5 follows from Lemma 1.

3. Applications

The following inequalities follow from Lemma 1 (Abstract Gronwall lemma).
3.1. Hyperbolic differential inequality ([4]) We consider the following hyperbolic inequality

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x \partial y} \leq f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right), \quad(x, y) \in \bar{D} \tag{1}
\end{equation*}
$$

and the Darboux problem

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x \partial y}=f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right), \quad(x, y) \in \bar{D} \tag{2}\\
& \begin{cases}u(x, 0)=\varphi(x), & x \in[0, a] \\
u(0, y)=\psi(y), & y \in[0, b], \quad \varphi(0)=\psi(0)\end{cases}
\end{align*}
$$

where $\bar{D}=[0, a] \times[0, b], f \in C\left(\bar{D} \times \mathbb{R}^{3}\right), \varphi \in C^{1}[0, a], \psi \in C^{1}[0, b], u \in C^{1}(\bar{D})$ and $\frac{\partial^{2} u}{\partial x \partial y} \in C(\bar{D})$.

We have
Theorem 1. If
(i) $f \in C\left(\bar{D} \times \mathbb{R}^{3}\right)$,
(ii) $\left|f\left(x, y, u_{1}, u_{2}, u_{3}\right)-f\left(x, y, v_{1}, v_{2}, v_{3}\right)\right| \leq L_{f} \max \left(\left|u_{i}-v_{i}\right|\right), i=1,2,3$,
(iii) $\varphi \in C^{1}[0, a], \psi \in C^{1}[0, b]$,
(iv) $f(x, y, \ldots): \mathbb{R}^{3} \rightarrow \mathbb{R}$ is monotone increasing,
then
(a) the Darboux problem (2)+(3) has a unique solution u^{*}
(b) if u is a solution of (1) + (3) then $u \leq u^{*}$.

Proof. We put the problem (2) $+(3)$ as a fixed point problem. If u is a solution of the problem $(2)+(3)$, then $\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ is a solution of the following system

$$
\left\{\begin{array}{l}
u(x, y)=\varphi(x)+\psi(y)-\varphi(0)+\int_{0}^{x} \int_{0}^{y} f(s, t, u(s, t), v(s, t), w(s, t)) d s d t \tag{4}\\
\left.\left.v(x, y)=\varphi^{\prime}(x)+\int_{0}^{y} f(x, t, u) x, t\right), v(x, t), w(x, t)\right) d t \\
w(x, y)=\psi^{\prime}(y)+\int_{0}^{x} f(s, y, u(s, y), v(s, y), w(s, y)) d s
\end{array}\right.
$$

or in general form

$$
\begin{aligned}
& u(x, y)=A_{1}(u, v, w)(x, y) \\
& v(x, y)=A_{2}(u, v, w)(x, y) \\
& w(x, y)=A_{3}(u, v, w)(x, y)
\end{aligned}
$$

$u, v, w \in C(\bar{D})$.
If $(u, v, w) \in C(\bar{D})^{3}$ is a solution of (4) then $u \in C^{1}(\bar{D})$ and $v=\frac{\partial u}{\partial x}, w=\frac{\partial u}{\partial y}$ i.e., u is a solution of $(2)+(3)$.

Let $X:=C(\bar{D}) \times C(\bar{D}) \times C(\bar{D})$ and
$\|(u, v, w)\|:=\max \left(\max _{\bar{D}}|u(x, y)| e^{-\tau(x+y)}, \max _{\bar{D}}|v(x, y)| e^{-\tau(x+y)}, \max _{\bar{D}}|w(x, y)| e^{-\tau(x+y)}\right)$
$\left(C\left(\bar{D},+, \mathbb{R},\|\cdot\|_{B}\right)\right.$ is a Banach space.
Let $A: X \rightarrow X,(u, v, w) \rightarrow\left(A_{1}(u, v, w), A_{2}(u, v, w), A_{3}(u, v, w)\right)$, we have

$$
\left\|A\left(u_{1}, v_{1}, w_{1}\right)-A\left(u_{2}, v_{2}, w_{2}\right)\right\|_{B} \leq \frac{L_{f}}{\tau}\left\|\left(u_{1}, v_{1}, w_{1}\right)-\left(u_{2}, v_{2}, w_{2}\right)\right\|_{B}
$$

Thus if $\tau>0$ is such that $L_{f} / \tau<1$, then the operator A is a contraction so A is a Picard operator. From (iv) we have that A is monotone increasing. let u be a solution of (1).

Then

$$
\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \leq A\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)
$$

From Lemma 1 we have that

$$
\begin{aligned}
u & \leq u^{*} \\
\frac{\partial u}{\partial x} & \leq \frac{\partial u^{*}}{\partial x} \\
\frac{\partial u}{\partial y} & \leq \frac{\partial u^{*}}{\partial y}
\end{aligned}
$$

Example 1. (see [4], [8]) Let $a, b>0$ and $\bar{D}=[0, a] \times[0, b]$. Let $p, q, r, g \in C(\bar{D})$. We consider the following hyperbolic inequality

$$
\frac{\partial^{2} u}{\partial x \partial y}+p(x, y) \frac{\partial u}{\partial x}+q(x, y) \frac{\partial u}{\partial y}+r(x, y) u \leq g(x, y), \quad(x, y) \in \bar{D}
$$

and the Darboux problem

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x \partial y}+p(x, y) \frac{\partial u}{\partial x}+q(x, y) \frac{\partial u}{\partial y}+r(x, y) u=g(x, y), \quad(x, y) \in \bar{D} \\
\begin{cases}u(x, 0)=\varphi(x), & x \in[0, a] \\
u(0, y)=\psi(y), & y \in[0, b], \varphi(0)=\psi(0),\end{cases}
\end{gather*}
$$

where $\varphi \in C^{1}[0, a]$ and $\psi \in C^{1}[0, b]$.
We suppose that $p \leq 0, q \leq 0$ and $r \leq 0$.
Then the Darboux problem $\left(2^{\prime}\right)+\left(3^{\prime}\right)$ has a unique solution u^{*}.
If u is a solution of $\left(1^{\prime}\right)+\left(3^{\prime}\right)$ then $u \leq u^{*}$. In this case

$$
\begin{aligned}
& u^{*}(x, y)=v(0,0 ; x, y) \varphi(0)+\int_{0}^{x} v(s, 0 ; x, y)\left(\varphi^{\prime}(s)+q(s, 0) \varphi(s)\right) d s+ \\
& +\int_{0}^{y} v(0, t ; x, y)\left(\psi^{\prime}(y)+p(0, t) \psi(t)\right) d t+\iint_{\bar{D}} v(s, t ; x, y) g(s, t) d s d t
\end{aligned}
$$

where v is the Riemann function.
Example 2. ([4]) We consider the inequalities
(i) $\frac{\partial^{2} u}{\partial x \partial y}+p(y) \frac{\partial u}{\partial x} \leq g(x, y)$
and
(ii) $\frac{\partial^{2} u}{\partial x \partial y}+q(x) \frac{\partial u}{\partial y} \leq g(x, y)$.

Then the Riemann functions are

$$
v=\exp \left(\int_{0}^{y} p(t) d t\right) \text { and respectively } v=\exp \left(\int_{0}^{x} q(s) d s\right) .
$$

3.2. Wendorff-type inequality. The following inequality follows from Lemma 2 ([13]).

Theorem 2. Let $u, v \in C\left(\mathbb{R}_{+}^{2}, \mathbb{R}_{+}\right)$and $c \in \mathbb{R}_{+}^{*}$.
If $u(x, y)$ verifies the inequality

$$
u(x, y) \leq c+\int_{x_{0}}^{x} \int_{y_{0}}^{y} v(s, t) u(s, t) d s d t, \quad x \geq x_{0}, y \geq y_{0}
$$

and $v(x, y)$ is monotone increasing, and if u^{*} is the unique solution of equation

$$
\frac{\partial u}{\partial x}=\left(\int_{y_{0}}^{y} v(x, t) d t\right) u(x, y)
$$

then $u(x, y) \leq u^{*}(x, y)$, where

$$
u^{*}(x, y)=c \cdot \exp \left(\int_{x_{0}}^{x} \int_{y_{0}}^{y} v(s, t) d s d t\right)
$$

Then $u(t) \leq u^{*}(t)$, where $u^{*}(t)$ is the solution of corresponding Bernoulli's equation.

Proof. In this case the operator A is defined by

$$
A=\int_{x_{0}}^{x} \int_{y_{0}}^{y} v(s, t) u(s, t) d s d t
$$

References

[1] D.V. Ionescu, Sur une classe d'équations fonctionnelles, Ann. Fac. Sc. Toulouse, 19(1927), 39-92.
[2] M. Krzyzanski, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
[3] A.A. Martynyuk, V. Lakshmikantham, S. Leela, Motion Stability: The Method of Integral Inequalities, Izd. Nauk Dumk, Kiev, 1989.
[4] N. Lungu, I.A. Rus, Hyperbolic differential inequalities, Libertas Mathematica, 21(2001), 35-40.
[5] N. Lungu, On Some Generalized Wendorff-type Inequalities, Studia Univ. Babeş-Bolyai, Mathematica, XXXVIII, 2(1993), 3-7.
[6] B.G. Pachpatte, On some new integral and integrodifferential inequalities in two independent variables and their applications, J. Diff. Eq., 33(1979), 249-272.
[7] A. Pelczar, Some functional differential equations, Dissertationes Mathematicae, 100(1973), Warszawa.
[8] I.A. Rus, Asupra pozitivităţii funcţiei lui Riemann, Lucrările colocviului de teoria aproximării, 1967, Cluj-Napoca, 199-200.
[9] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 4(1993), 769-773.
[10] I.A. Rus, Generalized contraction and applications, Cluj University Press, 2001.
[11] I.A. Rus, Picard operators and applications, Babeş-Bolyai Univ., Faculty of Math. and Comp. Science, Research Seminars, Seminar on Fixed Point Theory, Preprint no.3(1996), Cluj-Napoca, 1996.
[12] D.R. Snow, Gronwall's inequality for systems of partial differential equations in two independent variables, Proc. Amer. Math. Soc., 33(1972), 46-54.
[13] V.Ya. Stetsenko, M. Shaaban, On Operatorial Inequalities Analogous to Gronwall-Bihari Ones, D.A.N. Tadj. XXIX, 7(1986), 393-398 (in Russian).
[14] M. Zima, The abstract Gronwall lemma for some nonlinear operators, Demonstratio Math., 31(1998), 325-332.
[15] E.C. Young, Gronwall's inequalities in n independent variables, Proc. Amer. Math. Soc., 41(1973), 241-246.

