Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 249-254 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

ON SOME GRONWALL-BIHARI-WENDORFF-TYPE INEQUALITIES

NICOLAIE LUNGU

Department of Mathematics Technical University of Cluj-Napoca 3400 Cluj-Napoca, Romania

Abstract. This paper presents certain considerations on some lemmas of Gronwall-Bihari-Wendorff type, which follow from abstract Gronwall lemma for Picard operators.
Keywords: Picard operator, Gronwall lemma.
AMS Subject Classification: 47H04, 54H25.

1. INTRODUCTION

This paper presents certain considerations on some lemmas of Gronwall-Bihari-Wendorff type, which follow from abstract Gronwall lemma for Picard operators ([9], [10]). By this method certain generalizations for hyperbolic differential inequalities of Gronwall-Wendorff's classical inequalities are presented; these inequalities involve the Riemann function for a linear hyperbolic operator.

2. Operatorial inequalities

In what follows we present some operatorial inequalities which are deduced from abstract Gronwall lemma ([9], [10], [11]).

Definition 1. ([9], [10]) Let (X, d) be a metric space. An operator $f : X \to X$ is called a Picard operator if there exists $x^* \in X$ such that

(i) $F_f = \{x^*\}$

(ii) $(f^n(x_0))_{n \in \mathbb{N}}$ converges to x^* , for all $x_0 \in X$.

Definition 2. ([9], [10]) Let (X, d) be a metric space. An operator $f : X \to X$ is said to be a weakly Picard operator if the sequence $(f^n(x_0))_{n \in \mathbb{N}}$ converges for all $x_0 \in X$ and the limit (which may depend on x_0) is a fixed point of f.

Lemma 1. (Abstract Gronwall lemma; [10], [11]) Let (X, d) be an ordered metric space and $A: X \to X$ an operator.

We suppose that:

(i) A is a Picard operator

(ii) A is monotone increasing.

If x_A^* is the fixed point of the operator A, then

(a) $x \le A(x) \Rightarrow x \le x_A^*$

(b) $x \ge A(x) \Rightarrow x \ge x_A^*$.

The following lemmas follow from Lemma 1.

Lemma 2. (Stetsenko, Shaaban [13]) Let E be a semiordered Banach space. If for an element u(v) we have

$$u \le Au + f \quad (v \ge Av + f)$$

where f is a fixed element and $A: E \to E$ an increasing operator.

 (U_1) : If the equation y = Ay + f has the unique solution y^* , which is the limit of the sequence $(y_n)_{n \in \mathbb{N}}$ defined by $y_{n+1} = Ay_n + f$, then

$$u \le y^* \quad (v \ge y^*).$$

Proof. Consider the operator $B: X \to X, x \to Ax + f$, Because the condition (U_1) is fulfilled, the operator B is Picard and we have

$$u \leq B(u).$$

Then Lemma 2 follows from the abstract Gronwall lemma.

Lemma 3. (Zeidler [11], [14]) Let $(X, \|\cdot\|, \leq)$ be an ordered Banach space and $A : X \to X$ be a continuous, linear and positive operator, with spectral radius r(A) < 1. Let $x, y, g \in X$. Then

$$x \le A(x) + g$$

and

$$y = A(y) + g$$

always implies

$$x \leq y$$

Proof. Since r(A) < 1, the operator

$$B: X \to X, \quad x \to A(x) + g$$

is a Picard operator. As A is linear and positive, A is increasing, and Lemma 3 follows from the abstract Gronwall lemma (Lemma 1).

Lemma 4. (Zima [14]) Let X be a semiordered Banach space. Let $A : X \to X$, be a linearly bounded, subadditive and increasing operator such that

$$\sum_{k=0}^{\infty} \|A^k\| < \infty.$$

Let $g, x \in X$ and x < g + Ax. Then

$$x < \sum_{k=0}^{\infty} A^k g.$$

Proof. Consider the operator $B: X \to X, x \to Ax + g$. Because A is linearly bounded, subadditive, increasing operator and $\sum_{k=0}^{\infty} ||A^k|| < \infty$, the operator B is

Picard. If x_B^* is the fixed point of B and

$$S_n x = \sum_{k=0}^{n-1} A^k g + A^n x,$$

then

$$\lim_{n \to \infty} S_n x = \sum_{k=0}^{\infty} A^k g = x_B^*$$

and $x < x_B^*$. (Here $\lim_{n \to \infty} ||A^n|| = 0$, and $x < S_n x$).

Lemma 5. (Martynyuk, Lakshmikantham, Leela [3]) Let X be a semiordered, complet metric space. If $x_n \in X$, $x_n \leq x_{n+1}$ for all $n \geq 1$ and exists $\lim_{n \to \infty} x_n = x_0$, then $x_n \leq x_0$. Let $T: X \to X$ be an increasing operator and for a $m \in \mathbb{N}$, T^m is a contraction.

If x_0 is unique fixed point of T, then

$$x \le Tx \Rightarrow x \le x_0.$$

Proof. Since T^m is a contraction and T is increasing operator and has a unique fixed point x_0 , then T is a Picard operator and Lemma 5 follows from Lemma 1.

3. Applications

The following inequalities follow from Lemma 1 (Abstract Gronwall lemma).

3.1. Hyperbolic differential inequality ([4]) We consider the following hyperbolic inequality

(1)
$$\frac{\partial^2 u}{\partial x \partial y} \le f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right), \quad (x, y) \in \overline{D}.$$

and the Darboux problem

(2)
$$\frac{\partial^2 u}{\partial x \partial y} = f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right), \quad (x, y) \in \overline{D}$$

(3)
$$\begin{cases} u(x,0) = \varphi(x), & x \in [0,a] \\ u(0,y) = \psi(y), & y \in [0,b], \ \varphi(0) = \psi(0) \end{cases}$$

where $\overline{D} = [0, a] \times [0, b], f \in C(\overline{D} \times \mathbb{R}^3), \varphi \in C^1[0, a], \psi \in C^1[0, b], u \in C^1(\overline{D})$ and $\frac{\partial^2 u}{\partial x \partial y} \in C(\overline{D}).$ We have **Theorem 1.** If (i) $f \in C(\overline{D} \times \mathbb{R}^3),$ (ii) $|f(x, y, u_1, u_2, u_3) - f(x, y, v_1, v_2, v_3)| \leq L_f \max(|u_i - v_i|), i = 1, 2, 3,$ (iii) $\varphi \in C^1[0, a], \psi \in C^1[0, b],$ (iv) $f(x, y, \dots) : \mathbb{R}^3 \to \mathbb{R}$ is monotone increasing, then

(a) the Darboux problem (2)+(3) has a unique solution u^*

(b) if u is a solution of (1)+(3) then $u \leq u^*$.

Proof. We put the problem (2)+(3) as a fixed point problem. If u is a solution of the problem (2)+(3), then $\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ is a solution of the following system

(4)
$$\begin{cases} u(x,y) = \varphi(x) + \psi(y) - \varphi(0) + \int_0^x \int_0^y f(s,t,u(s,t),v(s,t),w(s,t)) ds dt \\ v(x,y) = \varphi'(x) + \int_0^y f(x,t,u)x,t), v(x,t), w(x,t)) dt \\ w(x,y) = \psi'(y) + \int_0^x f(s,y,u(s,y),v(s,y),w(s,y)) ds \end{cases}$$

or in general form

$$\begin{aligned} & u(x,y) = A_1(u,v,w)(x,y) \\ & v(x,y) = A_2(u,v,w)(x,y) \\ & w(x,y) = A_3(u,v,w)(x,y) \end{aligned}$$

 $u, v, w \in C(\overline{D}).$

If $(u, v, w) \in C(\overline{D})^3$ is a solution of (4) then $u \in C^1(\overline{D})$ and $v = \frac{\partial u}{\partial x}$, $w = \frac{\partial u}{\partial y}$ i.e., u is a solution of (2)+(3).

Let $X := C(\overline{D}) \times C(\overline{D}) \times C(\overline{D})$ and

$$\|(u,v,w)\| := \max(\max_{\overline{D}} |u(x,y)|e^{-\tau(x+y)}, \max_{\overline{D}} |v(x,y)|e^{-\tau(x+y)}, \max_{\overline{D}} |w(x,y)|e^{-\tau(x+y)})$$

 $\begin{aligned} (C(\overline{D}, +, \mathbb{R}, \|\cdot\|_B) &\text{ is a Banach space.} \\ \text{Let } A: X \to X, \, (u, v, w) \to (A_1(u, v, w), A_2(u, v, w), A_3(u, v, w)), \, \text{we have} \\ \|A(u_1, v_1, w_1) - A(u_2, v_2, w_2)\|_B &\leq \frac{L_f}{\tau} \|(u_1, v_1, w_1) - (u_2, v_2, w_2)\|_B. \end{aligned}$

Thus if $\tau > 0$ is such that $L_f/\tau < 1$, then the operator A is a contraction so A is a Picard operator. From (iv) we have that A is monotone increasing. let u be a solution of (1).

Then

$$\left(u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right) \leq A\left(u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right)$$

From Lemma 1 we have that

$$u \leq u^*$$

 $rac{\partial u}{\partial x} \leq rac{\partial u^*}{\partial x}$
 $rac{\partial u}{\partial y} \leq rac{\partial u^*}{\partial y}.$

Example 1. (see [4], [8]) Let a, b > 0 and $\overline{D} = [0, a] \times [0, b]$. Let $p, q, r, g \in C(\overline{D})$. We consider the following hyperbolic inequality

(1')
$$\frac{\partial^2 u}{\partial x \partial y} + p(x,y)\frac{\partial u}{\partial x} + q(x,y)\frac{\partial u}{\partial y} + r(x,y)u \le g(x,y), \quad (x,y) \in \overline{D}$$

and the Darboux problem

(2')
$$\frac{\partial^2 u}{\partial x \partial y} + p(x, y) \frac{\partial u}{\partial x} + q(x, y) \frac{\partial u}{\partial y} + r(x, y) u = g(x, y), \quad (x, y) \in \overline{D}$$

(3')
$$\begin{cases} u(x,0) = \varphi(x), & x \in [0,a] \\ u(0,y) = \psi(y), & y \in [0,b], \ \varphi(0) = \psi(0), \end{cases}$$

where $\varphi \in C^1[0, a]$ and $\psi \in C^1[0, b]$.

We suppose that $p \leq 0$, $q \leq 0$ and $r \leq 0$.

Then the Darboux problem (2') + (3') has a unique solution u^* . If u is a solution of (1') + (3') then $u \le u^*$. In this case

$$\begin{split} u^*(x,y) &= v(0,0;x,y)\varphi(0) + \int_0^x v(s,0;x,y)(\varphi'(s) + q(s,0)\varphi(s))ds + \\ &+ \int_0^y v(0,t;x,y)(\psi'(y) + p(0,t)\psi(t))dt + \iint_{\overline{D}} v(s,t;x,y)g(s,t)dsdt \end{split}$$

where v is the Riemann function.

Example 2. ([4]) We consider the inequalities

(i)
$$\frac{\partial^2 u}{\partial x \partial y} + p(y) \frac{\partial u}{\partial x} \le g(x, y)$$

and $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y}$

(ii)
$$\frac{\partial^2 u}{\partial x \partial y} + q(x) \frac{\partial u}{\partial y} \le g(x, y).$$

Then the Riemann functions are

$$v = \exp\left(\int_0^y p(t)dt\right)$$
 and respectively $v = \exp\left(\int_0^x q(s)ds\right)$.

3.2. Wendorff-type inequality. The following inequality follows from Lemma 2 ([13]).

Theorem 2. Let $u, v \in C(\mathbb{R}^2_+, \mathbb{R}_+)$ and $c \in \mathbb{R}^*_+$. If u(x, y) verifies the inequality

$$u(x,y) \le c + \int_{x_0}^x \int_{y_0}^y v(s,t)u(s,t)dsdt, \quad x \ge x_0, \ y \ge y_0$$

and v(x, y) is monotone increasing, and if u^* is the unique solution of equation

$$\frac{\partial u}{\partial x} = \left(\int_{y_0}^y v(x,t)dt\right)u(x,y)$$

then $u(x,y) \leq u^*(x,y)$, where

$$u^*(x,y) = c \cdot \exp\left(\int_{x_0}^x \int_{y_0}^y v(s,t) ds dt\right).$$

Then $u(t) \leq u^*(t)$, where $u^*(t)$ is the solution of corresponding Bernoulli's equation.

Proof. In this case the operator A is defined by

$$A = \int_{x_0}^x \int_{y_0}^y v(s,t) u(s,t) ds dt.$$

REFERENCES

- D.V. Ionescu, Sur une classe d'équations fonctionnelles, Ann. Fac. Sc. Toulouse, 19(1927), 39-92.
- [2] M. Krzyzanski, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
- [3] A.A. Martynyuk, V. Lakshmikantham, S. Leela, Motion Stability: The Method of Integral Inequalities, Izd. Nauk Dumk, Kiev, 1989.
- [4] N. Lungu, I.A. Rus, Hyperbolic differential inequalities, Libertas Mathematica, 21(2001), 35-40.
- [5] N. Lungu, On Some Generalized Wendorff-type Inequalities, Studia Univ. Babeş-Bolyai, Mathematica, XXXVIII, 2(1993), 3-7.
- [6] B.G. Pachpatte, On some new integral and integrodifferential inequalities in two independent variables and their applications, J. Diff. Eq., 33(1979), 249-272.
- [7] A. Pelczar, Some functional differential equations, Dissertationes Mathematicae, 100(1973), Warszawa.
- [8] I.A. Rus, Asupra pozitivității funcției lui Riemann, Lucrările colocviului de teoria aproximării, 1967, Cluj-Napoca, 199-200.
- [9] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 4(1993), 769-773.
- [10] I.A. Rus, Generalized contraction and applications, Cluj University Press, 2001.
- [11] I.A. Rus, *Picard operators and applications*, Babeş-Bolyai Univ., Faculty of Math. and Comp. Science, Research Seminars, Seminar on Fixed Point Theory, Preprint no.3(1996), Cluj-Napoca, 1996.
- [12] D.R. Snow, Gronwall's inequality for systems of partial differential equations in two independent variables, Proc. Amer. Math. Soc., 33(1972), 46-54.
- [13] V.Ya. Stetsenko, M. Shaaban, On Operatorial Inequalities Analogous to Gronwall-Bihari Ones, D.A.N. Tadj. XXIX, 7(1986), 393-398 (in Russian).
- [14] M. Zima, The abstract Gronwall lemma for some nonlinear operators, Demonstratio Math., 31(1998), 325-332.
- [15] E.C. Young, Gronwall's inequalities in n independent variables, Proc. Amer. Math. Soc., 41(1973), 241-246.