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Let be the equation

(1) P (x) ≡ f(x)− L(x) = 0,

where L ∈ Hom(X, Y ), f : X −→ Y is continuous and Gâteaux differentiable in a
later specified subset of X, the X and Y being some particularized PLC spaces. We
write formally P ′(x) = (f ′(x) − L) ∈ Hom(X,Y ), and [u, v;P ] = ([u, v; f ] − L) ∈
Hom(X, Y ), where a divided difference [u, v; f ] in the knots u, v ∈ X means a linear
and continuous mapping of X into Y with [u, v; f ](u− v) = f(u)− f(v).

As approximations of the solution of the equation (1) we use two monotonic se-
quences. The increasing sequence is given by the formula:

(2) (f ′(yn)− L) (xn+1) = (L− f)(xn); (n = 1, 2, ...),

where yn = αnxn−1 + (1− αn)xn, with αn ∈ [0, 1].
The decreasing sequence is obtained by the formula:

(3) ([x0, wn; f ]− L) (wn+1) = ([x0, wn; f ]− f) (xn), (n = 0, 1, . . .).

After we state our main theorem, we use it:
• to approximate the solution of Cauchy’s problems for first order ODE;
• to solve numerically two-point boundary value problems;
• to solve numerically Dirichlet problems for elliptic equations.

1. The basic theorem

Theorem 1 (Goldner and Tr̂ımbiţaş, 1998). Let X be a locally full PLC space, Y a
regular and locally full PLC space, and D ⊆ X a convex subset. Let us suppose the
points x0, w0 ∈ intD with x0 ≤ w0, the continuous Gâteaux differentiable mapping
with a positive second order divided difference on the (o)-interval [x0, w0] f : intD −→
Y , and L ∈ Hom(X, Y ) satisfy the following conditions:

(i) there exists the compact and positive mapping L−1;
(ii) L(x0) ≤ f(x0), L(w0) ≥ f(w0);
(iii) there exists a linear and continuous mapping g ∈ L(X, Y ) such that for all

x ∈ [x0, w0] we have f ′(x) ≥ g(x) and Γ = L−g has a positive and continuous
inverse;
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(iv) for all u, v in [x0, w0] there is a mapping [u, v; P ]−1, negative and continuous.
Then

(j) the equation (1) has a unique solution x∗ ∈ [x0, w0];
(jj) for all n ∈ N there are the iterates (xn), (wn) given by (2),(3);
(jjj) for all n ∈ N we have x0 ≤ x1 ≤ . . . ≤ xn ≤ x∗ ≤ wn ≤ . . . ≤ w1 ≤ w0;
(jv) limn→∞ xn = limn→∞ wn = x∗.

Proof. See [7]. ¤

2. Cauchy’s problem

We apply the Theorem 1 to the Cauchy’s problem

(4)
{

x′(t) = ϕ(t, x(t)), t ∈]0, 1];
x(0) = 0.

Theorem 2. [Goldner and Tr̂ımbiţaş, 1998]Let ϕ : [0, 1]× R −→ R be a continuous
function, partially derivable and convex with respect to the second variable x. If there
exists x0, w0 ∈ C1([0, 1]) with x0(t) ≤ w0(t) for all t ∈ [0, 1], x0(0) = w0(0) = 0, such
that for all t ∈ [0, 1] we have x

′
0(t) ≤ ϕ(t, x0(t)), w

′
0(t) ≥ ϕ(t, w0(t)) then:

(j) it exists the increasing sequence (xn) and the decreasing sequence (wn) in
C1([0, 1]) given by

xn+1(t) = exp
(∫ t

0

∂ϕ (s, yn(s))
∂x

ds

)
·(5)

·
∫ t

0

ϕ

(
s, xn(s)− ∂ϕ (s, yn(s))

∂x
xn(s)

)
exp

(
−

∫ s

0

∂ϕ (z, yn(z))
∂x

dz

)
ds,

where yn(s) = αnxn−1(s) + (1− αn)xn(s), for all n = 1, 2, . . . , s ∈ [0, 1], and
(αn) a sequence with αn ∈ [0, 1].

wn+1(t) = exp
(∫ t

0

[x0(s), wn(s); ϕ] (x)ds

)
·(6)

·
∫ t

0

ϕ (s, xn(s)− [x0(s), wn(s); ϕ] (x) · wn(s))

· exp
(
−

∫ s

0

[x0(z), wn(z); ϕ] (x)dz

)
ds

for all n = 1, 2, . . . , and t ∈ [0, 1], where

[u(s), v(s); ϕ] (x) =

{
ϕ(s,u(s))−ϕ(s,v(s))

u(s)−v(s) , if s ∈ {t ∈ [0, 1]|u(t) 6= v(t)}
∂ϕ(s,u(s))

∂x , if s ∈ {t ∈ [0, 1]|u(t) = v(t)} ;

(jj) the sequences (xn(t)) and (wn(t)) are convergent in the topology of the uniform
convergence in C([0, 1]) to a function x∗ ∈ C1([0, 1]) and for all t ∈ [0, 1] and
n = 0, 1, 2, . . . we have xn(t) ≤ x∗(t) ≤ wn(t);

(jjj) x∗ is the unique solution of the problem (4) with x0(t) ≤ x∗(t) ≤ w0(t) for all
t ∈ [0, 1].
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3. The two-point boundary value problem

Let us consider the differential equation

(7) x(2n)(t) + ϕ(t, x(t)) = 0, t ∈]0, 1[,

with the homogeneous boundary conditions

(8) x(j)(0) = x(j)(1) = 0; (j = 0, r − 1).

Theorem 3 (Goldner and Tr̂ımbiţaş, 1999). Let ϕ : [0, 1] × R 7→ R be a continuous
function with respect to both variables, convex with respect to x, and having a contin-
uous partial derivative with respect to the second variable. Let us suppose there exist
the functions x0, w0 ∈ C2r (]0, 1[)∩Cr−1([0, 1]) verifying the inequalities x0(t) ≤ w0(t)
for all t ∈ [0, 1], x

(2n)
0 (t) ≥ −ϕ(t, x0(t), w

(2n)
0 (t) ≤ −ϕ(t, w0(t)) for each t ∈]0, 1[, and

satisfying (8). If the differential operators generated by the differential expressions

(Lx(h)) (t) = −h(2r)(t)− ∂ϕ (t, x(t))
∂x

· h(t), t ∈]0, 1[,(9)

(Lu,v (h)) (t) = −h(2r)(t)− [u(t), v(t); ϕ]x · h(t), t ∈]0, 1[,(10)

with the boundary conditions (8) for h have a unique and positive Green’s function
for all u, v and x in the (o)-interval [x0, w0], then:

(j) there exist the increasing sequence (xn) and the decreasing sequence (wn) of
functions in C2r (]0, 1[) ∩ Cr−1([0, 1]) given by

(11) (Lyn(xn+1)) (t) = ϕ(t, xn(t))− ∂ϕ (t, yn(t))
∂x

xn(t); n = 0, 1, . . . ,

where y0 = x0, yn = αnxn−1 + (1− αn)xn, for n = 1, 2, . . ., with αn ∈ [0, 1],
and

(12) (Lx0,wn (wn+1)) (t) = ϕ(t, wn(t))− [x0(t), wn(t); ϕ]wn(t); n = 0, 1, . . . ,

for each t ∈]0, 1[, the unknown functions xn+1 and wn+1 satisfying the bound-
ary conditions (8);

(jj) the sequences (xn) and (wn) converge in the topology of uniform convergence
in C([0, 1]) to the same limit x∗ ∈ C2r (]0, 1[) ∩ Cr−1([0, 1]), and for each
t ∈]0, 1[, and n = 0, 1, . . . , we have xn(t) ≤ x∗(t) ≤ wn(t);

(jjj) the function x∗ is the unique solution of (7)–(8) verifying x0(t) ≤ x∗(t) ≤
w0(t) for each t ∈]0, 1[.

Proof. See [8] ¤

4. The Dirichlet problem

m∑

i,j=1

aij(x)
∂2u(x)
∂xi∂xj

+ ϕ(x, u(x)) = 0, x = (xi)i=1,m ∈ Ω(13)

u(x) = 0, x ∈ ∂Ω,(14)
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where Ω ⊂ Rm open bounded, L : C2(Ω) ∩ C1(Ω̄) −→ L2(Ω̄) given by L(h) =
−∑m

i,j=1 aij(x) ∂2u(x)
∂xi∂xj is uniformly elliptic, ∂Ω continuous and piecewise indefinitely

derivable, aij : Ω̄ → R, and ϕ : Ω̄× R→ R indefinitely derivable.

Theorem 4 (Goldner and Tr̂ımbiţaş, 2001). Let ϕ : Ω̄ × R → R a continuous
function with respect to all variables, convex with respect to u, and having contin-
uous partial derivative with respect to u. Let us suppose there exist the functions
u0, w0 ∈ C2(Ω) ∩ C1(Ω̄) verifying the inequalities u0(x) ≤ w0(x) for all x ∈ Ω,
(L(u0))(x) ≤ ϕ(x, u0(x)), (L(w0))(x) ≥ ϕ(x, w0(x)) for each x ∈ Ω, and satisfying
(14). If the differential operator generated by the differential expressions

(Lu(h)) (x) = −
m∑

i,j=1

aij(x)
∂2h

∂xi∂xj
− ∂ϕ(x, u(x))

∂u
h(x), x ∈ Ω(15)

(Lv,w(h)) (x) = −
m∑

i,j=1

aij(x)
∂2h

∂xi∂xj
− [v(x), w(x); ϕ](u) h(x), x ∈ Ω(16)

with the boundary condition (14) for h have a unique and positive Green’s function
for all u, v, w in (o)-interval [u0,w0], then:

(j) there exist the increasing sequence (un) and the decreasing sequence (wn) of
functions in C2(Ω) ∩ C1(Ω̄) given by

(17) (Lyn(un+1)) (x) = ϕ(x, un(x))− ∂ϕ(x, yn(x))
∂u

un(x); n = 0, 1, . . .

where y0 = u0, yn = αnun−1 + (1− αn)un, for n = 1, 2, . . . , with αn ∈ [0, 1],
and

(18) (Lw0,wn(wn+1))(x)=ϕ(x, wn(x)) [w0(x), wn(x); ϕ](u) wn(x); n=0, 1, . . .

for each x ∈ Ω, the unknown functions un+1 and wn+1 satisfying the boundary
condition (14);

(jj) the sequences (un) and (wn) converge in the topology of uniform convergence
in C(Ω̄) to the same limit u∗ ∈ C2(Ω) ∩ C1(Ω̄), and for each x ∈ Ω, and
n = 0, 1, . . . , we have un(x) ≤ u∗(x) ≤ wn(x);

(jjj) the function u∗ is the unique solution of (13)–(14) verifying u0(x) ≤ u∗(x) ≤
w0(x), for each x ∈ Ω.

Proof. See [9]. ¤

5. Numerical examples

For the two-point boundary value problem we consider the equation

(19) x′′ (t) + x3(t) +
4− (t− t2)3

(t + 1)3
= 0, t ∈]0, 1[

with the boundary conditions

(20) x(0) = x(1) = 0.
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Figure 1. Iterations plot

The exact solution is

x∗(t) =
t− t2

t + 1
.

Initial approximations are x0 = 0, w0(t) = 2(t− t2); αn = 1
n+1 ; ε = 10−5

We used an uniform grid, where N = 100.
For Dirichlet problem

U =
∂2u

∂x2
+

∂2u

∂y2
+ u2 + x2y2 − x2y − xy2 + xy = 0,∀(x, y) ∈]0, 1[×]0, 1[(21)

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, ∀(x, y) ∈ [0, 1]× [0, 1](22)

Initial approximation u0(x, y) = 0 ≤ w0(x, y) = x2y2 − x2y − xy2 + xy.
For ε = 10−6, 2 iterations are needed in order to achieve the desired tolerance.
The solutions u and w appear in the figure 3.
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Figure 2. Error plot
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Figure 3. The graph of un (left) and wn for n = 2
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