A COMBINED METHOD FOR DIFFERENTIAL EQUATIONS

GAVRILĂ GOLDNER AND RADU T. TRÎMBIŢAŞ
Babeş-Bolyai University Cluj-Napoca
Str. Kogălniceanu 1, 3400 Cluj-Napoca, Romania

Let be the equation

$$
\begin{equation*}
P(x) \equiv f(x)-L(x)=0, \tag{1}
\end{equation*}
$$

where $L \in \operatorname{Hom}(X, Y), f: X \longrightarrow Y$ is continuous and Gâteaux differentiable in a later specified subset of X, the X and Y being some particularized PLC spaces. We write formally $P^{\prime}(x)=\left(f^{\prime}(x)-L\right) \in \operatorname{Hom}(X, Y)$, and $[u, v ; P]=([u, v ; f]-L) \in$ $\operatorname{Hom}(X, Y)$, where a divided difference $[u, v ; f]$ in the knots $u, v \in X$ means a linear and continuous mapping of X into Y with $[u, v ; f](u-v)=f(u)-f(v)$.

As approximations of the solution of the equation (1) we use two monotonic sequences. The increasing sequence is given by the formula:

$$
\begin{equation*}
\left(f^{\prime}\left(y_{n}\right)-L\right)\left(x_{n+1}\right)=(L-f)\left(x_{n}\right) ;(n=1,2, \ldots), \tag{2}
\end{equation*}
$$

where $y_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) x_{n}$, with $\alpha_{n} \in[0,1]$.
The decreasing sequence is obtained by the formula:

$$
\begin{equation*}
\left(\left[x_{0}, w_{n} ; f\right]-L\right)\left(w_{n+1}\right)=\left(\left[x_{0}, w_{n} ; f\right]-f\right)\left(x_{n}\right),(n=0,1, \ldots) . \tag{3}
\end{equation*}
$$

After we state our main theorem, we use it:

- to approximate the solution of Cauchy's problems for first order ODE;
- to solve numerically two-point boundary value problems;
- to solve numerically Dirichlet problems for elliptic equations.

1. The basic theorem

Theorem 1 (Goldner and Trîmbiţaş, 1998). Let X be a locally full PLC space, Y a regular and locally full PLC space, and $D \subseteq X$ a convex subset. Let us suppose the points $x_{0}, w_{0} \in$ intD with $x_{0} \leq w_{0}$, the continuous Gâteaux differentiable mapping with a positive second order divided difference on the (o)-interval $\left[x_{0}, w_{0}\right] f: \operatorname{int} D \longrightarrow$ Y, and $L \in \operatorname{Hom}(X, Y)$ satisfy the following conditions:
(i) there exists the compact and positive mapping L^{-1};
(ii) $L\left(x_{0}\right) \leq f\left(x_{0}\right), L\left(w_{0}\right) \geq f\left(w_{0}\right)$;
(iii) there exists a linear and continuous mapping $g \in \mathcal{L}(X, Y)$ such that for all $x \in\left[x_{0}, w_{0}\right]$ we have $f^{\prime}(x) \geq g(x)$ and $\Gamma=L-g$ has a positive and continuous inverse;
(iv) for all u, v in $\left[x_{0}, w_{0}\right]$ there is a mapping $[u, v ; P]^{-1}$, negative and continuous. Then
(j) the equation (1) has a unique solution $x^{*} \in\left[x_{0}, w_{0}\right]$;
(jj) for all $n \in \mathbb{N}$ there are the iterates $\left(x_{n}\right),\left(w_{n}\right)$ given by (2),(3);
(jjj) for all $n \in \mathbb{N}$ we have $x_{0} \leq x_{1} \leq \ldots \leq x_{n} \leq x^{*} \leq w_{n} \leq \ldots \leq w_{1} \leq w_{0}$;
(jv) $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} w_{n}=x^{*}$.
Proof. See [7].

2. CAUCHY'S PROBLEM

We apply the Theorem 1 to the Cauchy's problem

$$
\left\{\begin{array}{l}
\left.\left.x^{\prime}(t)=\varphi(t, x(t)), t \in\right] 0,1\right] \tag{4}\\
x(0)=0
\end{array}\right.
$$

Theorem 2. [Goldner and Trîmbif̧aş, 1998]Let $\varphi:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function, partially derivable and convex with respect to the second variable x. If there exists $x_{0}, w_{0} \in C^{1}([0,1])$ with $x_{0}(t) \leq w_{0}(t)$ for all $t \in[0,1], x_{0}(0)=w_{0}(0)=0$, such that for all $t \in[0,1]$ we have $x_{0}^{\prime}(t) \leq \varphi\left(t, x_{0}(t)\right)$, $w_{0}^{\prime}(t) \geq \varphi\left(t, w_{0}(t)\right)$ then:
(j) it exists the increasing sequence $\left(x_{n}\right)$ and the decreasing sequence $\left(w_{n}\right)$ in $C^{1}([0,1])$ given by

$$
\begin{align*}
& x_{n+1}(t)=\exp \left(\int_{0}^{t} \frac{\partial \varphi\left(s, y_{n}(s)\right)}{\partial x} d s\right) \tag{5}\\
& \cdot \int_{0}^{t} \varphi\left(s, x_{n}(s)-\frac{\partial \varphi\left(s, y_{n}(s)\right)}{\partial x} x_{n}(s)\right) \exp \left(-\int_{0}^{s} \frac{\partial \varphi\left(z, y_{n}(z)\right)}{\partial x} d z\right) d s
\end{align*}
$$

where $y_{n}(s)=\alpha_{n} x_{n-1}(s)+\left(1-\alpha_{n}\right) x_{n}(s)$, for all $n=1,2, \ldots, s \in[0,1]$, and $\left(\alpha_{n}\right)$ a sequence with $\alpha_{n} \in[0,1]$.
(6)

$$
\begin{aligned}
w_{n+1}(t)= & \exp \left(\int_{0}^{t}\left[x_{0}(s), w_{n}(s) ; \varphi\right](x) d s\right) \\
& \cdot \int_{0}^{t} \varphi\left(s, x_{n}(s)-\left[x_{0}(s), w_{n}(s) ; \varphi\right](x) \cdot w_{n}(s)\right) \\
& \cdot \exp \left(-\int_{0}^{s}\left[x_{0}(z), w_{n}(z) ; \varphi\right](x) d z\right) d s
\end{aligned}
$$

for all $n=1,2, \ldots$, and $t \in[0,1]$, where

$$
[u(s), v(s) ; \varphi](x)=\left\{\begin{array}{ll}
\frac{\varphi(s, u(s))-\varphi(s, v(s))}{u(s)-v(s)}, & \text { if } s \in\{t \in[0,1] \mid u(t) \neq v(t)\} \\
\frac{\partial \varphi(s, u(s))}{\partial x}, & \text { if } s \in\{t \in[0,1] \mid u(t)=v(t)\}
\end{array} ;\right.
$$

(jj) the sequences $\left(x_{n}(t)\right)$ and $\left(w_{n}(t)\right)$ are convergent in the topology of the uniform convergence in $C([0,1])$ to a function $x^{*} \in C^{1}([0,1])$ and for all $t \in[0,1]$ and $n=0,1,2, \ldots$ we have $x_{n}(t) \leq x^{*}(t) \leq w_{n}(t)$;
(jjj) x^{*} is the unique solution of the problem (4) with $x_{0}(t) \leq x^{*}(t) \leq w_{0}(t)$ for all $t \in[0,1]$.

3. The two-Point boundary value problem

Let us consider the differential equation

$$
\begin{equation*}
\left.x^{(2 n)}(t)+\varphi(t, x(t))=0, \quad t \in\right] 0,1[\tag{7}
\end{equation*}
$$

with the homogeneous boundary conditions

$$
\begin{equation*}
x^{(j)}(0)=x^{(j)}(1)=0 ; \quad(j=\overline{0, r-1}) . \tag{8}
\end{equation*}
$$

Theorem 3 (Goldner and Trîmbiţaş, 1999). Let $\varphi:[0,1] \times \mathbb{R} \mapsto \mathbb{R}$ be a continuous function with respect to both variables, convex with respect to x, and having a continuous partial derivative with respect to the second variable. Let us suppose there exist the functions $x_{0}, w_{0} \in C^{2 r}(] 0,1[) \cap C^{r-1}([0,1])$ verifying the inequalities $x_{0}(t) \leq w_{0}(t)$ for all $t \in[0,1], x_{0}^{(2 n)}(t) \geq-\varphi\left(t, x_{0}(t), w_{0}^{(2 n)}(t) \leq-\varphi\left(t, w_{0}(t)\right)\right.$ for each $\left.t \in\right] 0,1[$, and satisfying (8). If the differential operators generated by the differential expressions

$$
\begin{align*}
\left(L_{x}(h)\right)(t) & \left.=-h^{(2 r)}(t)-\frac{\partial \varphi(t, x(t))}{\partial x} \cdot h(t), \quad t \in\right] 0,1[\tag{9}\\
\left(L_{u, v}(h)\right)(t) & \left.=-h^{(2 r)}(t)-[u(t), v(t) ; \varphi]_{x} \cdot h(t), \quad t \in\right] 0,1[, \tag{10}
\end{align*}
$$

with the boundary conditions (8) for h have a unique and positive Green's function for all u, v and x in the (o)-interval $\left[x_{0}, w_{0}\right]$, then:
(j) there exist the increasing sequence $\left(x_{n}\right)$ and the decreasing sequence $\left(w_{n}\right)$ of functions in $C^{2 r}(] 0,1[) \cap C^{r-1}([0,1])$ given by

$$
\begin{equation*}
\left(L_{y_{n}}\left(x_{n+1}\right)\right)(t)=\varphi\left(t, x_{n}(t)\right)-\frac{\partial \varphi\left(t, y_{n}(t)\right)}{\partial x} x_{n}(t) ; n=0,1, \ldots, \tag{11}
\end{equation*}
$$

where $y_{0}=x_{0}, y_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) x_{n}$, for $n=1,2, \ldots$, with $\alpha_{n} \in[0,1]$, and

$$
\begin{equation*}
\left(L_{x_{0}, w_{n}}\left(w_{n+1}\right)\right)(t)=\varphi\left(t, w_{n}(t)\right)-\left[x_{0}(t), w_{n}(t) ; \varphi\right] w_{n}(t) ; n=0,1, \ldots, \tag{12}
\end{equation*}
$$

for each $t \in] 0,1\left[\right.$, the unknown functions x_{n+1} and w_{n+1} satisfying the boundary conditions (8);
(jj) the sequences $\left(x_{n}\right)$ and $\left(w_{n}\right)$ converge in the topology of uniform convergence in $C([0,1])$ to the same limit $x^{*} \in C^{2 r}(] 0,1[) \cap C^{r-1}([0,1])$, and for each $t \in] 0,1\left[\right.$, and $n=0,1, \ldots$, we have $x_{n}(t) \leq x^{*}(t) \leq w_{n}(t)$;
(jjj) the function x^{*} is the unique solution of (7)-(8) verifying $x_{0}(t) \leq x^{*}(t) \leq$ $w_{0}(t)$ for each $\left.t \in\right] 0,1[$.

Proof. See [8]

4. The Dirichlet problem

$$
\begin{align*}
& \sum_{i, j=1}^{m} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x^{i} \partial x^{j}}+\varphi(x, u(x))=0, \quad x=\left(x^{i}\right)_{i=\overline{1, m}} \in \Omega \tag{13}\\
& u(x)=0, \quad x \in \partial \Omega, \tag{14}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{m}$ open bounded, $L: C^{2}(\Omega) \cap C^{1}(\bar{\Omega}) \longrightarrow L^{2}(\bar{\Omega})$ given by $L(h)=$ $-\sum_{i, j=1}^{m} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x^{i} \partial x^{j}}$ is uniformly elliptic, $\partial \Omega$ continuous and piecewise indefinitely derivable, $a_{i j}: \bar{\Omega} \rightarrow \mathbb{R}$, and $\varphi: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ indefinitely derivable.
Theorem 4 (Goldner and Trîmbiţaş, 2001). Let $\varphi: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ a continuous function with respect to all variables, convex with respect to u, and having continuous partial derivative with respect to u. Let us suppose there exist the functions $u_{0}, w_{0} \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ verifying the inequalities $u_{0}(x) \leq w_{0}(x)$ for all $x \in \Omega$, $\left(L\left(u_{0}\right)\right)(x) \leq \varphi\left(x, u_{0}(x)\right),\left(L\left(w_{0}\right)\right)(x) \geq \varphi\left(x, w_{0}(x)\right)$ for each $x \in \Omega$, and satisfying (14). If the differential operator generated by the differential expressions

$$
\begin{align*}
\left(L_{u}(h)\right)(x) & =-\sum_{i, j=1}^{m} a_{i j}(x) \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}-\frac{\partial \varphi(x, u(x))}{\partial u} h(x), \quad x \in \Omega \tag{15}\\
\left(L_{v, w}(h)\right)(x) & =-\sum_{i, j=1}^{m} a_{i j}(x) \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}-[v(x), w(x) ; \varphi]_{(u)} h(x), \quad x \in \Omega \tag{16}
\end{align*}
$$

with the boundary condition (14) for h have a unique and positive Green's function for all u, v, w in (o)-interval $\left[u_{0}, w_{0}\right]$, then:
(j) there exist the increasing sequence $\left(u_{n}\right)$ and the decreasing sequence $\left(w_{n}\right)$ of functions in $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ given by

$$
\begin{equation*}
\left(L_{y_{n}}\left(u_{n+1}\right)\right)(x)=\varphi\left(x, u_{n}(x)\right)-\frac{\partial \varphi\left(x, y_{n}(x)\right)}{\partial u} u_{n}(x) ; \quad n=0,1, \ldots \tag{17}
\end{equation*}
$$

where $y_{0}=u_{0}, y_{n}=\alpha_{n} u_{n-1}+\left(1-\alpha_{n}\right) u_{n}$, for $n=1,2, \ldots$, with $\alpha_{n} \in[0,1]$, and

$$
\begin{equation*}
\left(L_{w_{0}, w_{n}}\left(w_{n+1}\right)\right)(x)=\varphi\left(x, w_{n}(x)\right)\left[w_{0}(x), w_{n}(x) ; \varphi\right]_{(u)} w_{n}(x) ; n=0,1, \ldots \tag{18}
\end{equation*}
$$

for each $x \in \Omega$, the unknown functions u_{n+1} and w_{n+1} satisfying the boundary condition (14);
(jj) the sequences $\left(u_{n}\right)$ and $\left(w_{n}\right)$ converge in the topology of uniform convergence in $C(\bar{\Omega})$ to the same limit $u^{*} \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$, and for each $x \in \Omega$, and $n=0,1, \ldots$, we have $u_{n}(x) \leq u^{*}(x) \leq w_{n}(x)$;
(jjj) the function u^{*} is the unique solution of (13)-(14) verifying $u_{0}(x) \leq u^{*}(x) \leq$ $w_{0}(x)$, for each $x \in \Omega$.

Proof. See [9].

5. Numerical examples

For the two-point boundary value problem we consider the equation

$$
\begin{equation*}
\left.x^{\prime \prime}(t)+x^{3}(t)+\frac{4-\left(t-t^{2}\right)^{3}}{(t+1)^{3}}=0, \quad t \in\right] 0,1[\tag{19}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
x(0)=x(1)=0 \tag{20}
\end{equation*}
$$

Figure 1. Iterations plot

The exact solution is

$$
x^{*}(t)=\frac{t-t^{2}}{t+1}
$$

Initial approximations are $x_{0}=0, w_{0}(t)=2\left(t-t^{2}\right) ; \alpha_{n}=\frac{1}{n+1} ; \varepsilon=10^{-5}$
We used an uniform grid, where $N=100$.
For Dirichlet problem

$$
\begin{align*}
& \left.U=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+u^{2}+x^{2} y^{2}-x^{2} y-x y^{2}+x y=0, \forall(x, y) \in\right] 0,1[\times] 0,1[\tag{21}\\
& \text { (22) } u(x, 0)=u(x, 1)=u(0, y)=u(1, y)=0, \quad \forall(x, y) \in[0,1] \times[0,1]
\end{align*}
$$

Initial approximation $u_{0}(x, y)=0 \leq w_{0}(x, y)=x^{2} y^{2}-x^{2} y-x y^{2}+x y$.
For $\varepsilon=10^{-6}$, 2 iterations are needed in order to achieve the desired tolerance.
The solutions u and w appear in the figure 3 .

Figure 2. Error plot

Figure 3. The graph of u_{n} (left) and w_{n} for $n=2$

References

[1] M. BALÁZS and G. GOLDNER, Remarks on divided differences and on the method of chords, Rev. Anal. Num. şi Theor. Aprox. 3(1974), pp. 19-30 (Romanian).
[2] M. BALÁZS and G. GOLDNER, Monotone enclosure for convex operators, Seminar on Math. Anal. Univ. "Babeş-Bolyai", preprint 7(1998), pp 125-130.
[3] M. BALÁZS and I. MUNTEAN, A unification of Newton's method for solving equations, Mathematica 21(1979) pp. 117-122.
[4] W. W. BRECKNER and GH. ORBÁN, Continuity properties of rationally s-convex mappings with values in an ordered topological space, Univ. "Babeş-Bolyai", Cluj-Napoca, 1978.
[5] G. GOLDNER, Divided differences, Fréchet derivatives, (o)-convexity, in Approximation and Optimization, Proceed. ICAOR (Romania), Cluj-Napoca, July 29-August 1, Transilvania Press (1997), pp. 259-264.
[6] G. GOLDNER, Combined iterative methods for operator equations, to appear in Mathematica.
[7] G. GOLDNER and R. TRÎMBIŢAŞ, A combined method usable for ordinary differential equations, Analele Universităţii din Timişoara, Vol. XXXVI, fasc. 2, Seria Matematică-Informatică, pp. 263-278, 1998.
[8] G. GOLDNER and R. TRÎMBIŢAŞ, PU.M.A, vol. 11 (2000), No. 2, pp. 255-264, 2000
[9] G. GOLDNER and R. TRÎMBIŢAŞ, 4th Joint Conference on Mathematics and Computer Science, Felix, 2001, accepted for PU.M.A
[10] MATLAB 5.2 set of manuals, MathWorks, Inc., Natick, MA, 1998.
[11] T. POPOVICIU, Les fonctions convexes, Herman \&Cie, Paris, 1945.
[12] J. S. VANDERGRAFT, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4(1967), pp. 406-432.
[13] R. BURDEN and J. D. FAIRES, Numerical Analysis, PWS-Kent, 1986.
[14] W. GAUTSCHI, Numerical Analysis - An Introduction, Birkhäuser, Boston, Basel, Berlin, 1997.
[15] M. A. NEIMARK, Differential Linear Operators, (Russian), Izd. Mir, Moscow, 1969.
[16] I. PEETRE and I. A. RUS, Sur la positivité de la fonction de Green, Math. Scand., 21 (1967), pp. 80-89.
[17] I. A. RUS, Sur la positivité de fonction de Green correspondant au problème bilocal, Glasn. Matem., 5(1970), pp. 251-257.
[18] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, B. P. FLANNERY, Numerical Recipes in C, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1995.
[19] MIRANDA, C., Equazioni alle derivate parziali di tipo ellitico, Springer Verlag, 1955.

