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Abstract. Consider the nonlinear two-point boundary value problem

uxx + up = 0,

u (0) = u (L) = 0,

p > 1, L > 0.

For every p = 2j−1, j ∈ N, j ≥ 2 the corresponding positive solution has a constant moment, i.e.
it does not depend on L. First, we justify these integral properties in the framework of Hamiltonian
mechanics.

Then, making use of a shooting method, we transform the above problem into an initial value one
for a system of differential equations. The integral properties mean the existence of a Hamiltonian
(non-quadratic algebraic invariant) for this system. Two numerical methods (a 2 stage Runge-Kutta
and a Stormer-Verlet), which preserve the Hamiltonian, are used to integrate the system.
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1. Introduction

Given a bounded interval [0, L] , L > 0 let us consider the nonlinear two-point
boundary value problem:

(1)
{

uxx + up = 0, 0 < x < L, p = 2j − 1, j ∈ N, j ≥ 2
u (0) = u (L) = 0.

First of all we show that for every odd p, p > 1, the moments of the corresponding
(unique) positive solution of (1) are constants; i.e. they do not depend on L. More
explicitly we show that

(2) Mj−1 = π/
√

j,

where, we adopt the notation Mn :=
L∫
0

un (x) dx for the n th moment of u. At this

point we give an alternative proof for the solution published in [12] (we are among
the solvers) and refine some results from [4]. We believe that is fairly interesting to
understand the sense of these properties from numerical point of view. Thus, in our
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previous paper [7], we developed an indirect algorithm (in the spirit exposed in [13])
to find the positive solution to (1). That was a projection - like algorithm for the
following initial - boundary value parabolic problem attached to (1):

(3)
ut = uxx + up, 0 < x < L, o < t < T
u (0, t) = u (L, t) = 0, 0 < t < T
u (x, 0) = u0 (x) 0 < x < L

where u0 (0) = u0 (L) = 0. In this context (2) represented a hyperplane in L2 (0, L)
and our algorithm kept every numerical approximation into this hyperplane. Analyti-
cally ([3], [10]) as well as numerically ([1], [2] and our numerical experiments reported
in [7]) is proved that the superlinear problem (3) belongs to the blow up case. To
avoid such behaviour the integral property (2) showed its usefulness. In [6] we devel-
oped a direct algorithm where the same property was considered as a restriction in a
Lagrange’s multiplier method.

In this paper, in the framework of Hamiltonian setting ([5]) we use two numerical
method that preserve the Hamiltonian of the problem.

2. Integral properties of positive solution to (1)

In our previous paper [6] some particularities of the set of solutions of the au-
tonomous problem (1) have been summarized. Thus, we used an ad-hoc method to
show the bifurcation from infinity and gave a variational characterization of the pos-
itive solution. Our findings are in accordance with those in [11] and express the fact
that there is no finite value of parameter L at which bifurcation occurs and there do
exist solutions whose norm tends to zero as the parameter tends to infinity. More
than that these small bifurcation solutions are characterized by strongly nonlinear
balances.

Thus, to justify (2) in the Hamiltonian setting we rewrite (1) as

(4) (u′ (x))2 = (u′ (0))2 − 1
j

(
u2j (x)

)
, 0 < x < L,

or explicitly

(5) u′ (x) = ± 1√
j

√(√
ju′ (0)

)2

− u2j (x).

We also observe that there exists a unique point c ∈ (0, 1) where the first derivative
of the positive solution vanishes and consequently u assumes its maximum value on
[0, L]. Let us denote umax := u (c). For this maximum value we have from the first
integral (4)

(6) uj
max =

√
ju′ (0) .

From (5), (6) and the monotonicity of u we deduce
L∫

0

uj−1dx =
2
√

j

j

umax∫

0

duj

√(√
ju′ (0)

)2 − u2j

=
2√
j

arcsin
uj

√
ju′ (0)

∣∣∣∣umax
0 =

π√
j

,

which means precisely (2).
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3. The Hamiltonian setting for (1)

Via a shooting argument the problem (1) can be written as

(7)





ux = v
vx = −up

u (0) = 0
v (0) = α

for an undetermined parameter α. The first integral (4) leads to the Hamiltonian

(H) H (v, u) =
1
2
v2 +

1
2j

(
u2j

)
=

1
2
u′ (0) = const.

4. Numerical methods that preserve non-quadratic algebraic invariant
(H)

Given the differential system (7) in tandem with the invariance condition (H) we
have determined a 2 stage Runge-Kutta method of order 4 whose matrix and weights
are displayed in Table 1 .

1/2−√3/6 1/4 1/4−√3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

Table 1. The R−Kmatrix and R−Kweights

This method satisfies the condition (H) with the precision of a term O
(
h3

)
. We

have made use of the theory from [9] where a necessary condition for a Runge-Kutta
(R−K) method to obey the invariant (H) is obtained. In [14] the same method is
obtained using a strategy based on the conservation of symplectic structure. The
numerical results carried out using this method are displayed in Fig.1.

We also have used a Stormer-Verlet (S − V ) method ([8]) which, for our problem,
reads 




u0 = 0, v0 = 9.5
vi+1/2 = vi − h

2 up
i

ui+1 = ui + hvi+1/2

vi+1 = vi+1/2 − h
2 up

i+1, i = 1, 2, ..., N
Hi := v2

i + 1
2u4

i − v2
0 .

The corresponding numerical results are reported in Fig.2. We have to remark that
the value of shooting parameter α was obtained by numerical experiments. We have
not paied special heed to this aspect.

5. Concluding remarks and open problems

Our numerical experiments show clearly that the implicit Runge-Kutta method is
much more expensive, with respect to the CPU time, than the Storner-Verlet method.
Howerer, both methods produce positive solutions to (1) which agree fairly well with
our previous results. More than that, the oscillatory variation of Hamiltonian energy,
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which is typical of symplectic methods, is apparent at least for S-V method. As
open problems, we mention first, the lack of sufficient conditions for the retention
of non-quadratic conservation laws, and second, the extension of our strategy to
multidimensional radially symmetric problems (1).
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Figure 1. The positive solution to (1), the variation of the Hamiltonian energy

and the discrete values of the term H = 0
(
h2

)
corrersponding to R−Kmethod

a/ h = 1/100, b/ h = 1000
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Figure 2. The positive solution to (1), the oscillatory variation of the Hamiltonian energy

and the discrete values of the term H = 0(h) corresponding to S-V method.
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