Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 217-222 $http://www.math.ubbcluj.ro/{\sim}nodeacj/journal.htm$

MULTIPLE SOLUTIONS FOR NEUMANN PROBLEM WITH **P-LAPLACIAN**

JENICĂ CRÎNGANU

University of Galati, Faculty of Science Str. Domneascã nr. 47, Galati, Romania

Abstract. In this paper we prove that the Neumann problem with p-Laplacean:

$$(\mathcal{P}) \left\{ \begin{array}{l} -\Delta_p u + |u|^{p-2} u = f(x,u), \ \mathrm{in} \ \Omega \\ | \bigtriangledown u|^{p-2} \frac{\partial u}{\partial n} = 0, \ \mathrm{on} \ \partial \Omega \end{array} \right.$$

has an unbounded sequence of solutions in $W^{1,p}(\Omega), 1 , using a multiple version of the$ "Mountain Pass" theorem.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let Ω be an open bounded subset in \mathbb{R}^N , $N \ge 2$, with smooth boundary, 1 , $f: \Omega \ge \mathbf{R} \to \mathbf{R}$ be a Caratheodory function which satisfies the growth condition:

(1)
$$|f(x,s)| \leq c(|s|^{q-1}+1), a.e.x \in \Omega, (\forall)s \in \mathbf{R},$$

where $c \ge 0$ is constant, $1 < q < p^* = \begin{cases} \frac{Np}{N-p}, \text{ if } p < N \\ +\infty, \text{ if } p \ge N \end{cases}$. We consider the Neumann problem (\mathcal{P}) , where Δ_p is the p-Laplacian operator

defined by

$$\Delta_p \mathbf{u} = \operatorname{div}(-\nabla \mathbf{u} - v^{p-2} \nabla \mathbf{u}) \text{ and } \frac{\partial u}{\partial n} = \nabla u \cdot n$$

We shall use the standard notation:

$$W^{1,p}(\Omega) = \left\{ u \in L^{p}(\Omega) : \frac{\partial u}{\partial x_{i}} \in L^{p}(\Omega), i \in \overline{1, N} \right\}$$

equipped with the norm

$$||u||_{1,p}^{p} = ||u||_{0,p}^{p} + \sum_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{0,p}^{p}$$

where $\|\cdot\|_{0,p}$ is the usual norm on $L^p(\Omega)$.

2	1	7

We define a new equivalent norm on the space $W^{1,p}(\Omega)$:

$$|||u|||_{1,p}^{p} = ||u||_{0,p}^{p} + ||\nabla u||_{0,p}^{p} = \int_{\Omega} |u|^{p} + \int_{\Omega} \left(\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right)^{p/2}$$

Then the space $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$ is separable, reflexive and uniformly convex Banach space.

The dual norm on $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$ is denoted by $||| \cdot |||_{*.}$. The operator $-\Delta_p$ may be seen acting from $W^{1,p}(\Omega)$ into $(W^{1,p}(\Omega))^*$ by

$$< -\Delta_p u, v > = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v, \text{ for all } u, v \in W^{1,p}(\Omega)$$

Definition 1. A function $u \in W^{1,p}(\Omega)$ is said to be a solution for the problem (\mathcal{P}) iff

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v + \int_{\Omega} |u|^{p-2} uv = \int_{\Omega} f(x, u) v, \text{ for all } v \in W^{1, p}(\Omega)$$

If $u \in W^{1,p}(\Omega)$ and $\Delta_p u \in L^{p'}(\Omega)$ we can speak about $|\nabla u|^{p-2} \frac{\partial u}{\partial n}\Big|_{\partial\Omega}$ and $\left|\nabla u\right|^{p-2} \left.\frac{\partial u}{\partial n}\right|_{\partial\Omega} \in W^{-\frac{1}{p'},p'}\left(\partial\Omega\right) \text{ (see e.g.[6])}.$ Let $\Psi: L^{q}(\Omega) \to \mathbf{R}$ be defined by

$$\Psi(u) = \int_{\Omega} F(x, u)$$
, where $F(x, s) = \int_{0}^{s} f(x, \tau) d\tau$

The function F is Caratheodory and

(2)
$$|F(x,s)| \le c_1(|s|^q + 1), \text{ a.e. } x \in \Omega, (\forall) s \in \mathbf{R}$$

where $c_1 \geq 0$ is constant.

The functional Ψ is continuously Frechet differentiable on $L^q(\Omega)$ and $\Psi'(\mathbf{u}) = N_f(\mathbf{u})$, for all $u \in L^q(\Omega)$, where N_f is the Nemytskii operator of f:

$$V_f(u)(x) = f(x, u(x)), \text{ a.e. } x \in \Omega$$

Let $\varphi: [0,\infty) \to \mathbf{R}$ be a normalization function defined by $\varphi(t) = t^{p-1}$ and

$$J_{\varphi}: W^{1,p}(\Omega) \to \mathcal{P}((W^{1,p}(\Omega))^*)$$

be the duality mapping corresponding to φ .

Then $J_{\varphi}u = \partial \phi(u)$ for all $u \in W^{1,p}(\Omega)$ (see [5]) where

$$\phi(u) = \int_{0}^{|||u|||_{1,p}} \varphi(t)dt = \frac{1}{p}|||u|||_{1,p}^{p}$$

and $\partial \phi$ is the subdifferential of φ in the sense of convex analysis.

218

The functional ϕ is convex continuously Frechet differentiable on $W^{1,p}(\Omega)$ and $\phi'(u) = -\Delta_p u + |u|^{p-2} u$, for all $u \in W^{1,p}(\Omega)$.

So J_{φ} is single valued and

$$J_{\varphi}u = \phi'(u) = -\Delta_p u + |u|^{p-2}u$$
, for all $u \in W^{1,p}(\Omega)$.

Then the Euler-Lagrange functional $\mathcal{F}: W^{1,p}(\Omega) \to \mathbf{R}$,

$$\mathcal{F}(u) = \phi(u) - \varphi(u) = \frac{1}{p} |||u|||_{1,p}^p - \int_{\Omega} F(x,u) \text{ is } C^1 \text{ in } W^{1,p}(\Omega)$$

and

$$\mathcal{F}'(u) = \phi'(u) - \varphi'(u) = -\Delta_p u + |u|^{p-2}u - N_f(u)$$

If $u \in W^{1,p}(\Omega)$ is a critical point for \mathcal{F} , that is $\mathcal{F}'(u) = 0$, then

 $\Delta_p u + |u|^{p-2} u = N_f(u)$ and consequently u is solution for the problem (\mathcal{P}) .

In order to show that the functional $\mathcal F$ has an unbounded sequence of critical points we use a multiple version of the "Mountain Pass" theorem (see e.g. Theorem 9.12 in [7]).

Theorem 1.1. Let X be an infinite dimensional real Banach space and let $f \in$ $C^{1}(X, \mathbf{R})$ be even, satisfy (P.S.) condition. Suppose f(0) = 0 and :

(i) there are constants $\rho, \alpha > 0$ such that $f|_{||x||=\rho} \ge \alpha$. (ii) for each finite dimensional subspace X_1 of X the set $\{x \in X : f(x) \ge 0\}$ is bounded. Then f possesses an unbounded sequence of critical values.

We recall that the functional $f \in C^1(X, \mathbf{R})$ satisfies the Palais-Smale condition (P.S.) if for every sequence $(u_n) \subset X$ with $(f(u_n))$ bounded and $f'(u_n) \to 0$ as $n \to \infty$, possesses a convergent subsequence.

Since $W^{1,p}(\Omega)$ is uniformly convex and J_{φ} is single valued then J_{φ} satisfies the (S_+) condition: if $u_n \rightharpoonup u$ (weakly in $W^{1,p}(\Omega)$) and

 $\lim_{n \to \infty} \sup \langle J_{\varphi} u_n, u_n - u \rangle \leq 0, \text{ then } u_n \to u \text{ (see e.g. [5], Proposition2)}.$

2. Existence result

We need the following result:

Proposition 2.1. Suppose the Caratheodory function $f : \Omega \times \mathbf{R} \to \mathbf{R}$ satisfies: (i) the growth condition (1)

(ii) there are numbers $\theta > p$ and $s_0 > 0$ such that

(3)
$$0 \le \theta F(x,s) \le sf(x,s), \text{ for a.e. } x \in \Omega, \ (\forall) \ |s| \ge s_0.$$

Then, if X_1 is a finite dimensional subspace of $W^{1,p}(\Omega)$ the set

 $S = \{u \in X_1 : \mathcal{F}(u) \ge 0\}$ is bounded in $W^{1,p}(\Omega)$.

Proof. From (3) there is $\gamma \in L^{\infty}(\Omega)$, $\gamma > 0$ on Ω (see [5]), such that

$$F(x,s) \geq \gamma(x)|s|^{\theta}$$
, a.e. $x \in \Omega$, $(\forall) |s| \geq s_0$

For $u \in W^{1,p}(\Omega)$ let us denote

(4)

$$\Omega_1(u) = \{ x \in \Omega : |u(x)| \ge s_0 \}, \Omega_2(u) = \Omega \setminus \Omega_1(u) .$$

By (2) we have

1

1

$$\begin{vmatrix} \int_{\Omega_2(u)} F(x,u) \\ Simple \leq \int_{\Omega_2(u)} |F(x,u)| \leq \int_{\Omega_2(u)} c_1(|u|^q + 1) \leq c_1 \int_{\Omega} s_0^q + \int_{\Omega} c_1 = \\ = c_1(s_0^q + 1) vol \ \Omega = k_1 \end{aligned}$$

and using (4) we have

(5)
$$\mathcal{F}(u) = \frac{1}{p} |||u|||_{1,p}^{p} - \int_{\Omega_{1}(u)} F(x,u) - \int_{\Omega_{2}(u)} F(x,u) \leq \\ \leq \frac{1}{p} |||u|||_{1,p}^{p} - \int_{\Omega_{1}(u)} \gamma(x)|u|^{\theta} + k_{1} = \\ = \frac{1}{p} |||u|||_{1,p}^{p} - \int_{\Omega} \gamma(x)|u|^{\theta} + \int_{\Omega_{2}(u)} \gamma(x)|u|^{\theta} + k_{1} \leq \\ \leq \frac{1}{p} |||u|||_{1,p}^{p} - \int_{\Omega} \gamma(x)|u|^{\theta} + k_{2}$$

where $k_2 = ||\gamma||_{\infty} s_0^2 vol \ \Omega + k_1$. The functional $||\cdot||_{\gamma} : W^{1,p}(\Omega) \to \mathbf{R}$, defined by

$$||u||_{\gamma} = \left(\int_{\Omega} \gamma(x)|u|^{\theta}\right)^{\frac{1}{\theta}}$$
 is a norm on $W^{1,p}(\Omega)$.

On the finite dimensional subspace X_1 the norms $||| \cdot ||_{1,p}$ and $|| \cdot ||_{\gamma}$ being equivalent, there is a constant $\tilde{k} = \tilde{k}(X_1) > 0$ such that $|||u|||_{1,p} \leq \tilde{k} \left(\int_{\Omega} \gamma(x)|u|^{\theta} \right)^{\frac{1}{\theta}}$ for all $u \in X_1$. Consequently, by (5), on X_1 it holds:

$$\mathcal{F}(u) \leq \frac{1}{p} \tilde{k}^p \left(\int_{\Omega} \gamma(x) |u|^{\theta} \right)^{\frac{1}{\theta}} - \int_{\Omega} \gamma(x) |u|^{\theta} + k_2 =$$
$$= \frac{1}{p} \tilde{k}^p ||u||_{\gamma}^p - ||u||_{\gamma}^{\theta} + k_2.$$

Therefore $\frac{1}{p}\tilde{k}^p||u||_{\gamma}^p - ||u||_{\gamma}^{\theta} + k_2 \ge 0$ fol all $u \in S$ and since $\theta > p$ we conclude that S is bounded in $W^{1,p}(\Omega)$ (in the norme $||\cdot||_{\gamma}$ and so in the norme $|||\cdot||_{1,p}$).

Now, we can state

Theorem 2.1. Suppose the Caratheodory functions $f : \Omega \mathbf{x} \mathbf{R} \to \mathbf{R}$ is odd in the second argument : f(x, s) = -f(x, -s) and satisfies:

(i) there is $q \in (1, p^*)$ such that

$$|f(x,s)| \leq c(|s|^{q-1}+1)$$
, a.e. $x \in \Omega$, $(\forall) s \in \mathbf{R}$

220

(ii) $\limsup_{s \to 0} \frac{f(x,s)}{|s|^{p-2}s} < \lambda_1$ uniformly with a.e. $x \in \Omega$, where $\lambda_1 = \inf \left\{ \frac{|||v|||_{1,p}^p}{||v||_{0,p}^p} : v \in W^{1,p}(\Omega), v \neq 0 \right\}$. (iii) there are constants $\theta > p$ and $s_0 > 0$ such that $0 < \theta F(x,s) \leq sf(x,s)$ for a.e. $x \in \Omega, (\forall) |s| \geq s_0$

Then the problem (\mathcal{P}) has an unbounded sequence of solutions.

Proof. It's enough to show that \mathcal{F} has an unbounded sequence of critical points in $W^{1,p}(\Omega)$.

For this we shall use the theorem 1.1.

Clearly $\mathcal{F}(0) = 0$ and \mathcal{F} is even since f is odd.

By (i), (ii) and (iii) and proposition 2.1 it results that \mathcal{F} satisfies the (PS) condition and hypothesis (i) and (ii) of the theorem 1.1.

References

- [1] R.A. ADAMS, Sobolev Spaces, Academic Press (1975).
- [2] A. AMBROSETTI, P.H. RABINOWITZ, Dual variational methods in critical points theory and applications, J.Funct. Anal. 14(1973), 349-381.
- [3] H. BREZIS, Analyse functionelle, Masson, Paris (1983).
- [4] J. CRINGANU, A result of existence for p-Laplacian, Neumann problem, 5eme Colloque francoroumain de mathematiques appliquees, Constanta, septembre 2000.
- [5] G. DINCA, P. JEBELEAN, J. MAWHIN, Variational and topological methods for Dirichlet problems with p-Laplacian, Preprint, Université Catholique de Louvain, 1999.
- [6] M.C. PELISSIER, Sur quelques problemes non lineaires en glaciologie, These, Publ.Math.,d'Orsay, 110 (1975).
- [7] P.H. RABINOWITZ, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Math. Sci.Regional Conference Series in Math, no 65, Amer.Math.Soc., Providence, R.I, (1986).