MULTIPLE SOLUTIONS FOR NEUMANN PROBLEM WITH P-LAPLACIAN

JENICĂ CRÎNGANU
University of Galati, Faculty of Science
Str. Domneascã nr. 47, Galati, Romania

Abstract. In this paper we prove that the Neumann problem with p-Laplacean:

$$
(\mathcal{P})\left\{\begin{array}{l}
-\Delta_{p} u+|u|^{p-2} u=f(x, u), \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial n}=0, \text { on } \partial \Omega
\end{array}\right.
$$

has an unbounded sequence of solutions in $\mathrm{W}^{1, p}(\Omega), 1<p<\infty$, using a multiple version of the "Mountain Pass" theorem.

1. Introduction and preliminary results

Let Ω be an open bounded subset in $\mathbf{R}^{N}, N \geq 2$, with smooth boundary, $1<p<\infty$, $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ be a Caratheodory function which satisfies the growth condition:

$$
\begin{equation*}
|f(x, s)| \leq c\left(|s|^{q-1}+1\right), \text { a.e. } x \in \Omega,(\forall) s \in \mathbf{R} \tag{1}
\end{equation*}
$$

where $c \geq 0$ is constant, $1<q<p^{*}=\left\{\begin{array}{c}\frac{N p}{N-p}, \text { if } p<N \\ +\infty, \text { if } p \geq N\end{array}\right.$.
We consider the Neumann problem (\mathcal{P}), where Δ_{p} is the p-Laplacian operator defined by

$$
\Delta_{p} \mathrm{u}=\operatorname{div}\left(-\nabla \mathrm{u}-^{p-2} \nabla \mathrm{u}\right) \text { and } \frac{\partial u}{\partial n}=\nabla u \cdot n
$$

We shall use the standard notation:

$$
W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \frac{\partial u}{\partial x_{i}} \in L^{p}(\Omega), i \in \overline{1, N}\right\}
$$

equipped with the norm

$$
\|u\|_{1, p}^{p}=\|u\|_{0, p}^{p}+\sum_{i=1}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{0, p}^{p}
$$

where $\|\cdot\|_{0, p}$ is the usual norm on $L^{p}(\Omega)$.

We define a new equivalent norm on the space $W^{1, p}(\Omega)$:

$$
\|u\|_{1, p}^{p}=\|u\|_{0, p}^{p}+\|\nabla u\|_{0, p}^{p}=\int_{\Omega}|u|^{p}+\int_{\Omega}\left(\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right)^{p / 2}
$$

Then the space $\left(W^{1, p}(\Omega),\left|\left||\cdot| \|_{1, p}\right)\right.\right.$ is separable, reflexive and uniformly convex Banach space.

The dual norm on $\left(W^{1, p}(\Omega), \mid\|\cdot\| \|_{1, p}\right)^{*}$ is denoted by $\mid\|\cdot\| \|_{* .}$.
The operator $-\Delta_{p}$ may be seen acting from $W^{1, p}(\Omega)$ into $\left(W^{1, p}(\Omega)\right)^{*}$ by

$$
<-\Delta_{p} u, v>=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v, \text { for all } u, v \in W^{1, p}(\Omega)
$$

Definition 1. A function $u \in W^{1, p}(\Omega)$ is said to be a solution for the problem (\mathcal{P}) iff

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v+\int_{\Omega}|u|^{p-2} u v=\int_{\Omega} f(x, u) v, \text { for all } v \in W^{1, p}(\Omega)
$$

If $u \in W^{1, p}(\Omega)$ and $\Delta_{p} u \in L^{p^{\prime}}(\Omega)$ we can speak about $\left.|\nabla u|^{p-2} \frac{\partial u}{\partial n}\right|_{\partial \Omega}$ and $\left.|\nabla u|^{p-2} \frac{\partial u}{\partial n}\right|_{\partial \Omega} \in W^{-\frac{1}{p^{\prime}}, p^{\prime}}(\partial \Omega)$ (see e.g.[6]).

Let $\Psi: L^{q}(\Omega) \rightarrow \mathbf{R}$ be defined by

$$
\Psi(u)=\int_{\Omega} F(x, u), \text { where } F(x, s)=\int_{0}^{s} f(x, \tau) d \tau
$$

The function F is Caratheodory and

$$
\begin{equation*}
|F(x, s)| \leq c_{1}\left(|s|^{q}+1\right), \text { a.e. } x \in \Omega,(\forall) s \in \mathbf{R} \tag{2}
\end{equation*}
$$

where $c_{1} \geq 0$ is constant.
The functional Ψ is continuously Frechet differentiable on $L^{q}(\Omega)$ and $\Psi^{\prime}(\mathrm{u})=\mathrm{N}_{f}(\mathrm{u})$, for all $u \in L^{q}(\Omega)$, where N_{f} is the Nemytskii operator of f:

$$
N_{f}(u)(x)=f(x, u(x)), \text { a.e. } x \in \Omega
$$

Let $\varphi:[0, \infty) \rightarrow \mathbf{R}$ be a normalization function defined by $\varphi(t)=t^{p-1}$ and

$$
J_{\varphi}: W^{1, p}(\Omega) \rightarrow \mathcal{P}\left(\left(W^{1, p}(\Omega)\right)^{*}\right)
$$

be the duality mapping corresponding to φ.
Then $J_{\varphi} u=\partial \phi(u)$ for all $u \in W^{1, p}(\Omega)$ (see [5]) where

$$
\left.\phi(u)=\int_{0}^{\| \| u \|_{1, p}} \varphi(t) d t=\frac{1}{p} \right\rvert\,\|u\|_{1, p}^{p}
$$

and $\partial \phi$ is the subdifferential of φ in the sense of convex analysis.

The functional ϕ is convex continuously Frechet differentiable on $W^{1, p}(\Omega)$ and $\phi^{\prime}(u)=-\Delta_{p} u+|u|^{p-2} u$, for all $u \in W^{1, p}(\Omega)$.

So J_{φ} is single valued and

$$
J_{\varphi} u=\phi^{\prime}(u)=-\Delta_{p} u+|u|^{p-2} u, \text { for all } u \in W^{1, p}(\Omega) .
$$

Then the Euler-Lagrange functional $\mathcal{F}: W^{1, p}(\Omega) \rightarrow \mathbf{R}$,

$$
\left.\mathcal{F}(u)=\phi(u)-\varphi(u)=\frac{1}{p} \right\rvert\,\|u\|_{1, p}^{p}-\int_{\Omega} F(x, u) \text { is } C^{1} \text { in } W^{1, p}(\Omega)
$$

and

$$
\mathcal{F}^{\prime}(u)=\phi^{\prime}(u)-\varphi^{\prime}(u)=-\Delta_{p} u+|u|^{p-2} u-N_{f}(u) .
$$

If $u \in W^{1, p}(\Omega)$ is a critical point for \mathcal{F}, that is $\mathcal{F}^{\prime}(u)=0$, then
$\Delta_{p} u+|u|^{p-2} u=N_{f}(u)$ and consequently u is solution for the problem (\mathcal{P}).
In order to show that the functional \mathcal{F} has an unbounded sequence of critical points we use a multiple version of the "Mountain Pass" theorem (see e.g. Theorem 9.12 in [7]).

Theorem 1.1. Let X be an infinite dimensional real Banach space and let $f \in$ $C^{1}(X, \mathbf{R})$ be even, satisfy (P.S.) condition. Suppose $f(0)=0$ and :
(i) there are constants $\rho, \alpha>0$ such that $\left.\right|_{\|x\|=\rho} \geq \alpha$.
(ii) for each finite dimensional subspace X_{1} of X the set $\{x \in X: f(x) \geq 0\}$ is bounded. Then f possesses an unbounded sequence of critical values.

We recall that the functional $f \in C^{1}(X, \mathbf{R})$ satisfies the Palais-Smale condition (P.S.) if for every sequence $\left(u_{n}\right) \subset X$ with $\left(f\left(u_{n}\right)\right)$ bounded and $f^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, possesses a convergent subsequence.

Since $W^{1, p}(\Omega)$ is uniformly convex and J_{φ} is single valued then J_{φ} satisfies the $\left(S_{+}\right)$condition: if $u_{n} \rightharpoonup u$ (weakly in $W^{1, p}(\Omega)$) and
$\lim _{n \rightarrow \infty} \sup <J_{\varphi} u_{n}, u_{n}-u>\leq 0$, then $u_{n} \rightarrow u$ (see e.g. [5], Proposition2).

2. Existence result

We need the following result:
Proposition 2.1. Suppose the Caratheodory function $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ satisfies:
(i) the growth condition (1)
(ii) there are numbers $\theta>p$ and $s_{0}>0$ such that

$$
\begin{equation*}
0 \leq \theta F(x, s) \leq s f(x, s), \text { for a.e. } x \in \Omega,(\forall)|s| \geq s_{0} \tag{3}
\end{equation*}
$$

Then, if X_{1} is a finite dimensional subspace of $W^{1, p}(\Omega)$ the set
$S=\left\{u \in X_{1}: \mathcal{F}(u) \geq 0\right\}$ is bounded in $W^{1, p}(\Omega)$.
Proof. From (3) there is $\gamma \in L^{\infty}(\Omega), \gamma>0$ on Ω (see[5$]$), such that

$$
\begin{equation*}
F(x, s) \geq \gamma(x)|s|^{\theta} \text {, a.e. } x \in \Omega,,(\forall)|s| \geq s_{0} \tag{4}
\end{equation*}
$$

For $u \in W^{1, p}(\Omega)$ let us denote

$$
\Omega_{1}(u)=\left\{x \in \Omega:|u(x)| \geq s_{0}\right\}, \Omega_{2}(u)=\Omega \backslash \Omega_{1}(u) .
$$

By (2) we have

$$
\begin{aligned}
\int_{\Omega_{2}(u)} F(x, u) \mid & \leq \int_{\Omega_{2}(u)}|F(x, u)| \leq \int_{\Omega_{2}(u)} c_{1}\left(|u|^{q}+1\right) \leq c_{1} \int_{\Omega} s_{0}^{q}+\int_{\Omega} c_{1}= \\
& =c_{1}\left(s_{0}^{q}+1\right) \operatorname{vol} \Omega=k_{1}
\end{aligned}
$$

and using (4) we have

$$
\begin{align*}
\mathcal{F}(u) & \left.=\frac{1}{p} \right\rvert\,\|u\|_{1, p}-\int_{\Omega_{1}(u)} F(x, u)-\int_{\Omega_{2}(u)} F(x, u) \leq \tag{5}\\
& \leq\left.\frac{1}{p}\left|\|u\|_{1, p}^{p}-\int_{\Omega_{1}(u)} \gamma(x)\right| u\right|^{\theta}+k_{1}= \\
& =\frac{1}{p}\left|\left\|\left.u\left|\|_{1, p}^{p}-\int_{\Omega} \gamma(x)\right| u\right|^{\theta}+\int_{\Omega_{2}(u)} \gamma(x)|u|^{\theta}+k_{1} \leq\right.\right. \\
& \leq\left.\frac{1}{p}\left|\|u\|_{1, p}^{p}-\int_{\Omega} \gamma(x)\right| u\right|^{\theta}+k_{2}
\end{align*}
$$

where $k_{2}=\|\gamma\|_{\infty} s_{0}^{2} \operatorname{vol} \Omega+k_{1}$.
The functional $\|\cdot\|_{\gamma}: W^{1, p}(\Omega) \rightarrow \mathbf{R}$, defined by

$$
\|u\|_{\gamma}=\left(\int_{\Omega} \gamma(x)|u|^{\theta}\right)^{\frac{1}{\theta}} \text { is a norm on } W^{1, p}(\Omega)
$$

On the finite dimensional subspace X_{1} the norms $\|\|\cdot\|\|_{1, p}$ and $\|\cdot\| \|_{\gamma}$ being equivalent, there is a constant $\tilde{k}=\tilde{k}\left(X_{1}\right)>0$ such that $\left|\|u \mid\|_{1, p} \leq \tilde{k}\left(\int_{\Omega} \gamma(x)|u|^{\theta}\right)^{\frac{1}{\theta}}\right.$ for all $u \in X_{1}$.

Consequently, by (5), on X_{1} it holds:

$$
\begin{aligned}
\mathcal{F}(u) & \leq \frac{1}{p} \tilde{k}^{p}\left(\int_{\Omega} \gamma(x)|u|^{\theta}\right)^{\frac{1}{\theta}}-\int_{\Omega} \gamma(x)|u|^{\theta}+k_{2}= \\
& =\frac{1}{p} \tilde{k}^{p}\|u\|_{\gamma}^{p}-\|u\|_{\gamma}^{\theta}+k_{2} .
\end{aligned}
$$

Therefore $\frac{1}{p} \tilde{k}^{p}\|u\|_{\gamma}^{p}-\|u\|_{\gamma}^{\theta}+k_{2} \geq 0$ fol all $u \in S$ and since $\theta>p$ we conclude that S is bounded in $W^{1, p}(\Omega)$ (in the norme $\|\cdot\|_{\gamma}$ and so in the norme $\|\|\cdot\|\|_{1, p}$).

Now, we can state
Theorem 2.1. Suppose the Caratheodory functions $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ is odd in the second argument : $f(x, s)=-f(x,-s)$ and satisfies:
(i) there is $q \in\left(1, p^{*}\right)$ such that
$|f(x, s)| \leq c\left(|s|^{q-1}+1\right)$, a.e. $x \in \Omega,(\forall) s \in \mathbf{R}$
(ii) $\limsup _{s \rightarrow 0} \frac{f(x, s)}{|s|^{p-2} s}<\lambda_{1}$ uniformly with a.e. $x \in \Omega$,
where $\lambda_{1}=\inf \left\{\frac{\|v\|_{1, p}^{p}}{\|v\|_{0, p}^{o}}: v \in W^{1, p}(\Omega), v \neq 0\right\}$.
(iii) there are constants $\theta>p$ and $s_{0}>0$ such that
$0<\theta F(x, s) \leq s f(x, s)$ for a.e. $x \in \Omega,(\forall)|s| \geq s_{0}$
Then the problem (\mathcal{P}) has an unbounded sequence of solutions.
Proof. It's enough to show that \mathcal{F} has an unbounded sequence of critical points in $W^{1, p}(\Omega)$.

For this we shall use the theorem 1.1.
Clearly $\mathcal{F}(0)=0$ and \mathcal{F} is even since f is odd.
By (i), (ii) and (iii) and proposition 2.1 it results that \mathcal{F} satisfies the (PS) condition and hypothesis (i) and (ii) of the theorem 1.1.

References

[1] R.A. ADAMS, Sobolev Spaces, Academic Press (1975).
[2] A. AMBROSETTI, P.H. RABINOWITZ, Dual variational methods in critical points theory and applications, J.Funct. Anal. 14(1973), 349-381.
[3] H. BREZIS, Analyse functionelle, Masson, Paris (1983).
[4] J. CRINGANU, A result of existence for p-Laplacian, Neumann problem, 5eme Colloque francoroumain de mathematiques appliquees, Constanta, septembre 2000.
[5] G. DINCA, P. JEBELEAN, J. MAWHIN, Variational and topological methods for Dirichlet problems with p-Laplacian, Preprint, Université Catholique de Louvain, 1999.
[6] M.C. PELISSIER, Sur quelques problemes non lineaires en glaciologie, These, Publ.Math.,d'Orsay, 110 (1975).
[7] P.H. RABINOWITZ, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Math. Sci.Regional Conference Series in Math, no 65, Amer.Math.Soc., Providence, R.I, (1986).

