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Abstract. This is an expository paper in which we investigate the problem of finding the proper
mapping to obtain the solution of a differential equation. The classical existence theorem for differ-
ential equations begins by telling us to write the differential equation as an integral equation; and
we soon see good reasons for doing so. We ask if there are even better reasons for not doing this.
During the last several years we have studied the problem of proving existence and periodic results by
mapping the differential equation itself without converting to an integral equation. We have studied
the problem of proving stability results by converting to an integral equation and then applying fixed
point theory. Our main quest here is to discover how to use fixed point theory to prove stability
without writing the differential equation as an integral equation. We leave this mainly as an open
problem.
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0. Stating the problem

The investigator begins with a differential equation DE and the need to find a
solution φ with a given set of properties and hopes to arrive at the solution by means
of a fixed point theorem. The first step is to discover the space S in which φ should
reside. The next step is to discover a mapping P : S → S so that if P has a fixed
point ψ, then ψ will qualify as a solution of DE. The third step is to find a fixed
point theorem which is compatable with the previous two steps. Every step is often
a great challenge.

For example, when investigators wanted to prove that a functional differential
equation with infinite delay had a periodic solution, it was the greatest surprise to
find that compactness requirements forced them to work in a space with unbounded
initial functions [5]. Moreover, we learn so much in the process. Early in our studies we
find the theorem which says that a continuous function on a compact set is uniformly
continuous. Thus, we naturally think that compactness is a great friend of continuity.
It is in fixed point theory that we really see that continuity and compactness are
constantly at war with one another. We must weaken a space in order to make a set
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compact, but this means that we must strengthen the properties of the mapping so
that it will still be continuous.

Often there is a very simple trick that enables the investigator to arrive at a suitable
mapping. Consider the implicit function problem of finding a function φ satisfying
the equation

f(t, y) = 0.

We have seen it solved so often by the contraction mapping principle that we seldom
think of the creativity involved in writing down

(Pφ)(t) = φ(t) + f(t, φ(t))

so that if Pφ = φ then the extraneous part of the equation drops out and we have
f(t, φ(t)) = 0.

In this expository paper we describe some of the problems encountered in trying
to prove existence, periodicity, and stability.

We begin with existence and note that the traditional manner of obtaining the
mapping is to integrate the equation; this works well until we come to neutral func-
tional differential equations. We then find that integrating the equation does not
work, but it does work to integrate the derivative of the solution. This gives rise to
what we call direct fixed point mappings. Two examples are given of classical prob-
lems from the stated point of view, but the reader is referred to another paper for the
neutral case.

If we want to prove that a differential equation has a periodic solution and if we
know, for example, that solutions are uniformly ultimately bounded, then a Poincaré
map may very effectively work with a sandwich fixed point theorem [11] to solve the
problem. But if little is known about solutions, then the investigator may try to define
a mapping by integrating the equation. This process is filled with difficulties. We do
not know the initial condition so we do not know the lower limit of integration; but
even if we knew the lower limit, we frequently obtain a mapping equation which maps
periodic functions out of the set. If the equation has a proper linear part then we
may use the variation of parameters formula and perform the integration from −∞
to t, circumventing both of the aforementioned difficulties. But if the equation has
no linear part then the investigator improvises, perhaps by adding and subtracting
a linear term. This, too, can introduce other problems. Once more, we find that
by integrating the derivative of the solution instead of integrating the differential
equation we will obtain a proper mapping. Again, direct fixed point mappings seem
quite successful. An example of an infinite delay problem is given.

For more than a hundred years stability problems have been investigated mainly
by Liapunov’s direct method. In that theory there arise problems which have proved
to be very difficult. One of the major dfficulties involves what is called the annulus
argument. The solution may race back and forth across an annulus so rapidly that
integration of the derivative of the Liapunov function does not yield a quantity large
enough to send the Liapunov function, and hence the solution, to zero. In order to
solve such problems we began the study of stability by fixed point theory. The central
difficulty is in obtaining a proper mapping. If there is a proper linear part, then we
can use the variation of parameters formula and obtain a very effective mapping which



FIXED POINTS, DIFFERENTIAL EQUATIONS, AND PROPER MAPPINGS 21

eliminates many of the difficultes encountered in Liapunov’s direct method. We can
also contrive a variation of paramers formula when there is no proper linear part; an
example of each is given here. But for a general theory it seems that we really do
need to develop a method of direct fixed point mappings for stability problems. In
the final section we begin a brief outline of such a process. It is then left as an open
problem.

1. Local existence

When we wish to use a fixed point theorem to solve a differential equation we
almost always invert the equation and use the inverted form for a mapping. Kras-
noselskii studied a paper of Schauder on partial differential equations and concluded
that frequently when we invert a perturbed differential operator we obtain the sum
of a contraction and compact map. This is so simply seen in the case of existence of
solutions of an ordinary differential equation. If the functions are locally Lipschitz,
then a simple integration yields a contraction mapping on a sufficiently short interval
and we use the contraction mapping theorem to obtain local existence of a unique
solution of the initial value problem. The central idea is that the integration parlays
the Lipschitz constant (which may be large) into a contraction constant smaller than
1. Since it is a simple symbolic integration there is little reason to not be pleased
with the process.

If the functions are merely continuous then that same simple symbolic integration
yields a compact map and we use Schauder’s second theorem to obtain a solution of
the initial value problem, possibly not unique. Again, there is little reason to not be
pleased with the process. When we encounter neutral functional differential equations
[3] the process breaks down and we are led to other methods.

We begin with two brief proofs of classical results illustrating the techniques. These
results are taken from [4]. Classical treatment for Theorems 1.1 and 1.2 is found in
Smart [18; pp. 4, 43, 44].

Let x ∈ Rn, a > 0, b > 0, and

(1.1) Ω = {(t, x) | |t− t0| ≤ a, |x− x0| ≤ b}.
Suppose that f : Ω → Rn is continuous and consider the initial value problem

(1.2) x′ = f(t, x), x(t0) = x0.

THEOREM 1.1 (Cauchy-Picard). If f satisfies a Lipschitz condition on Ω
with constant K and if |f(t, x)| ≤ M on Ω, then (1.2) has a unique solution for
|t − t0| ≤ α where 0 < α < min[1/K, b/M, a]. (By using a different metric than the
standard one, 1/K can be deleted.)

PROOF. Let (M, ρ) be the complete metric space of continuous functions where

(1.3) M = {φ : [t0 − α, t0 + α] → Rn | φ(t0) = f(t0, x0),

‖φ‖ ≤ M, φ continuous},
ρ(φ, ψ) = ‖φ− ψ‖ = sup

|t−t0|≤α

|φ(t)− ψ(t)|,

| · | is a norm on Rn and also denotes absolute value.
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Here, our proof diverges from the classical one. For each φ ∈M define

(1.4) Φ(t) = x0 +
∫ t

t0

φ(s)ds.

Thus, Φ(t0) = x0, |Φ(t)−x0| ≤ M |t− t0| ≤ b and so |f(t,Φ(t))| ≤ M since (t, Φ(t)) ∈
Ω. Then the mapping P defined on M by

(1.5) (Pφ)(t) = f(t, Φ(t)), |t− t0| ≤ α,

is continuous, (Pφ)(t0) = f(t0, x0), and |(Pφ)(t)| ≤ |f(t, Φ(t))| ≤ M . Hence, P :
M→M and if Pφ = φ, then Φ is a solution of (2).

Next, P is a contraction since

|(Pφ)(t)− (Pψ)(t)| = |f(t, Φ(t))− f(t,Ψ(t))|
≤ K|Φ(t)−Ψ(t)|

= K

∣∣∣∣
∫ t

t0

[φ(s)− ψ(s)]ds

∣∣∣∣
≤ Kα‖φ− ψ‖

and Kα < 1. Hence, there is a unique fixed point. Φ solves (1.2) and, clearly, is
unique.

THEOREM 1.2 (Cauchy-Euler). Let Ω be defined in (1.1), f : Ω → Rn be
continuous, |f(t, x)| ≤ M on Ω, and α = min[a, b/M ]. Then (1.2) has a solution for
|t− t0| ≤ α.

PROOF. Let M, Φ, and P be defined in (1.3), (1.4), and (1.5). The set M is
contained in a Banach space, P : M → M, and P is continuous by the uniform
continuity of f on Ω.

We now show that PM is equicontinuous so that Schauder’s second theorem (cf.
Smart [18; p. 25]) will yield a fixed point. Let ε > 0 be given. We must find
δ > 0 so that φ ∈ M and |t1 − t2| < δ imply that |(Pφ)(t1) − (Pφ)(t2)| < ε. Now
|(Pφ)(t1)−(Pφ)(t2)| = |f(t1, Φ(t1))−f(t2,Φ(t2))|. Since f is uniformly continuous on
Ω, for the given ε > 0 there is a δ > 0 such that |t1 − t2| < δ and |Φ(t1)− Φ(t2)| < δ

imply that |f(t1,Φ(t1)) − f(t2,Φ(t2))| < ε. But |Φ(t1) − Φ(t2)| =
∣∣ ∫ t2

t1
φ(s)ds

∣∣ ≤
M |t2 − t1| < δ provided that |t2 − t1| < δ/(M + 1) =: δ. This completes the proof.

While there seems to be no reason for choosing one type of proof over the other,
we showed in [3] that for a strongly nonlinear neutral equation, the latter method
worked when the former did not.

2. Periodic Solutions

Suppose that we wish to prove that there is a periodic solution. If we try to simply
integrate the equation to obtain a mapping equation, we can not do so because we do
not know what the initial condition might be. Moreover, the mapping we construct
will not map periodic functions into periodic functions.

If the equation takes the form

x′ = Ax + f(t, x)
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where A is a constant n × n matrix, all of whose characteristic roots have negative
real parts, then we employ the variation of parameters formula and integrate from
−∞ to t obtaining

x(t) =
∫ t

−∞
eA(t−s)f(s, x(s))ds.

We then write

(Pφ)(t) =
∫ t

−∞
eA(t−s)f(s, φ(s))ds.

We have avoided the initial condition. If f is periodic in the first coordinate, then P
maps periodic functions into periodic functions and we are off to a good start in fixed
point theory. The mapping smooths nicely.

But if the equation does not have a convenient linear term then we must manu-
facture a mapping. A time honored process is to add Ax to both sides [7]; and this
works sometimes, but it fails more often than it works. Examples of other methods
are found in [6] and [15].

Here, we consider an equation which would be effectively destroyed if we added
Ax to both sides since the given functions are so small compared to that term. The
equation is

(2.1) x′(t) =
∫ t

−∞
C(t, s)g(x(s))ds + p(t)

where C, g, and p are continuous and

(2.2) C(t + T, s + T ) = C(t, s) and p(t + T ) = p(t), some T > 0,

with a view to proving that there is a T -periodic solution. When C is of convolution
type with compact support then (2.1) can take the form

(2.3) x′ =
∫ t

t−h

d(t− s)g(x(s))ds + p(t),

about which much has been written. When p(t) = 0 it was used by Volterra [19] to
model a population, while Levin and Nohel [16] use it to model a nuclear reactor,
and Hale [13; pp. 120–3] points out that it can represent viscoelasticity. Again, when
p(t) = 0 and when g satisfies some degenerate conditions, then both Levin and Nohel
[16] and Hale [13; pp. 120–3] show that it can have periodic solutions. A solution of
this problem was given in [4] when g may be large.

For infinite delay equations the sandwich fixed point theorems ([5] and [11]) can
be very effective if general properties of solutions are known. But here we work only
from the functions given in the differential equations.

The case with g bounded and monotone, g(0) = 0, has been of much interest.
We first seek conditions to ensure that (2.1) has a T -periodic solution for arbitrary
continuous and T -periodic p(t) with

(2.4)
∫ T

0

p(s)ds = 0.

Later, a similar result is obtained for more general g, but small p.
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Our technique here was motivated by the fact that there can be enormous difficul-
ties when converting (2.1) to an integral equation, as mentioned earlier. But what is
much worse is that in converting (2.1) to an integral equation we are likely to lose
a marvelous property of (2.1). If we could use the right-hand-side of (2.1) itself as
the mapping, then with g bounded and C absolutely integrable, that mapping would
map the whole space into a bounded set. If, in addition, ∂C/∂t is absolutely inte-
grable then the map would be compact on bounded sets. A whole class of fixed point
theorems would then be at our disposal.

Thus, we consider (2.1) with (2.2) and let

(2.5) (P0
T , ‖ · ‖)

be the Banach space of continuous T -periodic functions with the supremum norm and
having mean value zero. Note that if x is T -periodic and solves (2.1) then x′ ∈ P 0

T .
Thus, we define a map P on P0

T by φ ∈ P0
T implies that

(2.6) (Pφk)(t) =
∫ t

−∞
C(t, s)g

(
k +

∫ s

0

φ(u)du

)
ds + p(t)

where k is a constant chosen so that Pφk ∈ P0
T . Conditions ensuring the existence of

such a k are simple, natural, and consistent with traditional assumptions on (2.1).

PROPOSITION 1. Let (2.2) and (2.4) hold, g∗ := dg/dx be continuous,

(2.7)
∫ t

−∞
|C(t, s)|ds be bounded,

(2.8) g(0) = 0, g ∗ (x) > 0,

and suppose that C is of one sign and not identically zero. Then there is a unique k
so that Pφk defined in (2.6) satisfies Pφk ∈ P0

T .
PROOF. As g(x) > 0 if x > 0, for any fixed φ ∈ P0

T , there is a k > 0 with

g

(
k +

∫ t

0
φ(s)ds

)
> 0 and, in the same way, a k with g

(
− k +

∫ t

0
φ(s)ds

)
< 0 for

all t. Now
∫ T

0

∫ t

−∞ C(t, s)g
(

k +
∫ s

0
φ(u)du

)
ds dt+

∫ T

0
p(s)ds is a continuous function

of the constant k; moreover, it changes sign and so the required k is assured, yielding
Pφk ∈ P0

T . To see that it is unique, if k1 6= k2 and both Pφki ∈ P0
T then for each

fixed s in the integrand there is an η(s) so that

0 =
∫ T

0

∫ t

−∞
C(t, s)

[
g

(
k1 +

∫ s

0

φ(u)du

)
− g

(
k2 +

∫ s

0

φ(u)du

)]
ds dt

=
∫ T

0

∫ t

−∞
C(t, s)g∗(η(s))[k1 − k2]ds dt

by the mean value theorem for derivatives, where η(t) lies between k1 +
∫ t

0
φ(u)du and

k2 +
∫ t

0
φ(u)du. But g∗ > 0, k1 6= k2, and C(t, s) is of one sign and not identically

zero. Hence, the right-hand-side is not zero.
From here on, Pφk = Pφ.
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PROPOSITION 2. Let the conditions of Proposition 1 hold and for each φ ∈ P0
T

pick that unique k and define P by (2.6). Then P is continuous.
PROOF. We will show that if φ ∈ P0

T is fixed and if φi → φ, then Pφi → Pφ. By
way of contradiction, if Pφi 6→ Pφ, then there is a subsequence, say φi again, and
δ > 0 with ‖Pφi−Pφ‖ ≥ δ. As φi → φ, it is clear that

∫ t

0
φi(s)ds → ∫ t

0
φ(s)ds so that

if k and ki are the unique constants in the definitions of Pφ and Pφi, then ki 6→ k.
In particular, there is a subsequence, say ki again, and a µ > 0 with |ki − k| ≥ µ.
Thus, for each s ∈ [0, T ] there is an η(s) with

0 =
∫ T

0

∫ t

−∞
C(t, s)

[
g

(
k +

∫ s

0

φ(u)du

)
− g

(
ki +

∫ s

0

φi(u)du

)]
ds dt

=
∫ T

0

∫ t

−∞
C(t, s)

[
g∗(η(s))

(
k − ki +

∫ s

0

(φ(u)− φi(u))du

)]
ds dt

and this is a contradiction since the right-hand-side is not zero when
∣∣∣∣
∫ t

0
(φ(u) −

φi(u))du

∣∣∣∣ < µ/2. This completes the proof.

THEOREM 2.1. Let the conditions of Prop. 1 hold, let g be bounded, and let

(2.9)
∫ t

−∞
|∂C(t, s)∂t|ds < ∞.

Then (2.1) has a T -periodic solution.
PROOF. The map P defined by (2.6) maps P0

T into a bounded subset of P0
T (bound

M) and it is continuous. Let S = {φ ∈ P0
T

∣∣ ‖φ‖ ≤ M + 1}. Then ‖PS‖ ≤ M . Prop.
1 shows P is well-defined, while Prop. 2 shows P is continuous. Now we show that
PS is equicontinuous. To this end, let ε > 0 be given. We will find δ > 0 such that
φ ∈ S and |t1 − t2| < δ imply that |(Pφ)(t1) − (Pφ)(t2)| < ε. As p is continuous,
it suffices to show that there is a bound on [(Pφ)(t)]′ for φ ∈ S. This is clear from
boundedness of

C(t, t)g
(

k +
∫ t

0

φ(s)ds

)
+

∫ t

−∞
(∂C(t, s)/∂t)g

(
k +

∫ s

0

φ(u)du

)
ds.

The application of Schauder’s second theorem (cf. Smart [18; p. 24] now yields the
fixed point and completes the proof.

If p is small and if g∗ > 0 near x = 0, then there is a parallel result even when g
is not bounded and monotone. It is convenient to make a change of variable so that
T ≤ 1.

THEOREM 2.2. Let (2.2), (2.4), (2.7), and (2.9) hold, C(t, s) have one sign,
and C(t, s) not be identically zero. Suppose there are constants M1,M2 such that

(2.10) g(0) = 0, g∗(x) > 0 if |x| ≤ M1,

(2.11) |g(x)| ≤ M2 if |x| ≤ M1,
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(2.12)
∫ t

−∞
|C(t, s)|M2ds + ‖p‖ < M1/2 and T ≤ 1.

Then (2.1) has a T -periodic solution.
PROOF. Let S = {φ ∈ P0

T

∣∣ ‖φ‖ < M1/2} and define P by (2.6) where k is now
chosen as follows. If φ ∈ S then there are ki with |ki| ≤ M1/2,

−M1 < k1 +
∫ t

0

φ(s)ds < 0,

and

0 < k2 +
∫ t

0

φ(s)ds < M1

so that ∫ T

0

∫ t

−∞
C(t, s)g

(
ki +

∫ t

0

φ(u)du

)
ds dt =: J(ki)

changes sign as i changes from 1 to 2. Hence, there is a k with J(k) = 0 and
|k| ≤ M1/2. The argument in Proposition 1 will show that k is unique.

Hence, P : S → P0
T and φ ∈ S implies that

‖Pφ‖ ≤ ‖p‖+ sup
∫ t

−∞
|C(t, s)|M2ds < M1/2

and so P : S → S. The remainder of the proof is just like that of Theorem 2.1.
Additional results on the existence of periodic solutions of delay equations using

the direct mapping can be found in [12].

3. A Simple Stability Result

We have noted that there is little innovation needed in obtaining existence theory
by direct fixed point maps and we have shown how to construct direct fixed point
maps for periodic solutions. Now we turn to stability theory and cite two results
found in [8]. The first shows a stability result based on a mapping obtained from a
linear term and the variation of parameters formula. The second example (in Section
4) concerns a stability result obtained from the variation of parameters formula when
there is no linear term and none is introduced. We leave the reader with the problem
of how to obtain a direct fixed point mapping parallel to those of our existence or
periodic results.

Fixed point theory has been used for a very long time in proving existence, unique-
ness, and periodicity of solutions of ordinary and functional differential equations.
But we believe that such use in the study of stability is fairly new. In [8] we give an
extensive discussion motivating such a study.

The half-linear equation

(3.1) x′(t) = −a(t)x(t) + b(t)g(x(t− r(t)))

presents severe challenges when we attempt to show that solutions tend to 0 using
Liapunov functionals. We are interested in the case where a can be negative some of
the time, a and b are related on average, both a and r′ can be unbounded. The problem
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of boundedness of r′ is discussed in Knyazhishche-Shcheglov [14] and Yoshizawa [20],
for example. Seifert [17] points out the need for t− r(t) to tend to ∞.

Here, we ask that a, b, and r be continuous, that

(3.2)
∫ t

0

a(s)ds →∞ as t →∞,

(3.3.)
∫ t

0

e−
R t

s
a(u)du|b(s)|ds ≤ α < 1, t ≥ 0,

(3.4) 0 ≤ r(t), t− r(t) →∞ as t →∞,

there is an L > 0 so that if |x|, |y| ≤ L then

(3.5.) g(0) = 0 and |g(x)− g(y)| ≤ |x− y|.

THEOREM 3.1. If (3.2)-(3.5) hold, then every solution of (3.1) with small
continuous initial function tends to 0 as t →∞. Moreover, the zero solution is stable
at t0 = 0.

PROOF. For the α and L, find δ > 0 with δ + αL ≤ L. Let ψ : (−∞, 0] → R be a
given continuous function with |ψ(t)| < δ and let

S = {φ : R → R|‖φ‖ ≤ L, φ(t) = ψ(t) if t ≤ 0, φ(t) → 0 as t →∞, φ ∈ C}
where ‖ · ‖ is the supremum norm.

Define P : S → S by
(Pφ)(t) = ψ(t) if t ≤ 0

and

(Pφ)(t) = e−
R t
0 a(s)dsψ(0) +

∫ t

0

e−
R t

s
a(u)dub(s)g(φ(s− r(s)))ds, t ≥ 0.

Clearly, Pφ ∈ C. We now show that (Pφ)(t) → 0 as t →∞. Let φ ∈ S and ε > 0
be given. Then ‖φ‖ ≤ L, there exists t1 > 0 with |φ(t− r(t))| < ε if t ≥ t1, and there
exists t2 > t1 such that t > t2 implies that e

− R t
t1

a(u)du
< ε/(Lα).

Then t > t2 implies that

|
∫ t

0

e−
R t

s
a(u)dub(s)g(φ(s− r(s)))ds|

≤
∫ t1

0

e−
R t

s
a(u)du|b(s)|Lds +

∫ t

t1

e−
R t

s
a(u)du|b(s)|εds

≤ e
− R t

t1
a(u)du

∫ t1

0

e−
R t1

s
a(u)du|b(s)|Lds + αε

≤ αLe
− R t

t1
a(u)du + αε

≤ ε + αε.

To see that P is a contraction under the supremum norm, if φ, η ∈ S, then

|(Pφ)(t)− (Pη)(t)| ≤
∫ t

0

e−
R t

s
a(u)du|b(s)|‖φ− η‖ds ≤ α‖φ− η‖
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with α < 1 by (3.3).
Hence, for each such initial function, P has a unique fixed point in S which solves

(3.1) and tends to 0.
To get stability for solutions starting at t0 = 0, let ε > 0 be given and do the above

work for L = ε.

4. A Fully Nonlinear Stability Result

Consider the scalar equation

(4.1) x′(t) = −a(t)x3 + g(t, x2, x)

where

a(t) ≥ 0,

∫ ∞

0

a(t)dt = ∞, g(t, y, 0) = 0,

and

(4.2) |g(t, y, x)− g(t, y, w)| ≤ b(t)|y||x− w|.
Now we come to a recurring problem. We require that for each bounded continuous

function z2(t) with z2(t) ≥ c for some c > 0, there is an α < 1 with
∫ t

0

e−
R t

s
a(u)z2(u)dub(s)z2(s)ds ≤ α, t ≥ 0.

An obvious sufficient condition is that a(t) ≥ kb(t) and a(t) ≥ 0 for all t and some
k > 1. But that is much too severe. We would like for a to be zero on long intervals
when b is nonzero.

But here we come to a real difficulty. In these fully nonlinear problems we will
use the unknown exact solution as part of the mapping. Thus, we need to rely on
additional information to ensure that solutions exist on [t0,∞). An example of (4.1)
is

x′ = −a(t)x3 + b(t)x3.

If a(t) < b(t) and b(t) > 0 on any interval [t0, t1], however short, there are solutions
with finite escape time. Hence, it will be necessary to work with particular initial
times t0 for which

(∗)
∫ t

t0

[−a(s) + b(s)]ds ≤ 0 for all t ≥ t0.

Obviously, if a(t) ≥ b(t) for all t, this would hold for any t0.

LEMMA. Let (*) hold and let x0 ∈ R. Then x(t, t0, x0) is defined for all t ≥ t0.
PROOF. Let x(t) = x(t, t0, x0) be a solution of (4.1) with maximal interval of

definition [t0, t1). It is known that t1 = ∞ or limt→t1 |x(t)| = ∞. Then define a
Liapunov function

V (x) = |x|
so that along the solution we have

V ′(x(t)) ≤ −a(t)|x(t)|3 + b(t)|x(t)|3 = [−a(t) + b(t)]V 3.
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If we separate variables and integrate we obtain

−V (t)−2 + V (t0)−2 ≤ 2
∫ t

t0

[−a(s) + b(s)]ds ≤ 0

so that |x(t)|3 ≤ |x(t0)|3, a contradiction to the finite escape time.
We now assume that for a given x0 and a given c < |x0|, there is an α < 1 such

that if z2(t) is continuous and x2
0 ≥ z2(t) ≥ c, then

(4.3)
∫ t

t0

e−
R t

s
a(u)z2(u)dub(s)z2(s)ds ≤ α for t ≥ t0.

LEMMA. Suppose that if tn →∞ and if

(∗∗) Kn = sup
t≥tn

∫ t

tn

[−a(s) + b(s)]ds, then lim
n→∞

Kn = 0.

If x(t) is a solution of (4.1) on [t0,∞) either x(t) → 0 or there is a c > 0 with
|x(t)| ≥ c.

PROOF. Suppose there is a sequence tn → ∞, a sequence sn > tn, and a c > 0
with |x(tn)| → 0 and |x(sn)| = c. Rename indices so that |x(tn)| < c/2 for all n.
Using the V as in the proof of the first lemma, and taking

kn =
∫ sn

tn

[−a(s) + b(s)]ds

we have, upon integration of V ′, the relation

−V −2(sn)) + V −2(tn)) ≤ 2kn.

If some kn ≤ 0, then V (sn) ≤ V (tn), a contradiction. Hence, kn ≥ 0 for all n and
kn ≤ Kn → 0 as n →∞ so

V −2(tn))− 2kn ≤ c−2,

a contradiction since V (tn) → 0.
In particular, from this result, for each x0 there is a solution x(t, 0, x0) =: z(t)

defined on [0,∞). If we strengthen the Lipschitz condition in (4.2) it is unique. We
will now outline the method to be used on these problems.

1. We shall assume or prove that there is a t0 and for each x0 there is a unique
solution x(t, t0, x0) =: z(t) on [t0,∞). When (*) and (**) hold we have shown in the
lemmas how this might be done in a particular problem.

2. Hence, z(t) is the unique solution of

(4.4) x′ = −a(t)x2(t)x + g(t, z2(t), x), x(t0) = x0.

3. PROBLEM. In what space does z(t) lie? We want to show that it lies in

(4.5) S = {φ : [t0,∞) → R|φ(t0) = x0, φ(t) → 0 as t →∞, φ ∈ C}.
Here, ‖ · ‖ will denote the supremum norm.
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The unique solution of (4.4) is

(4.6) x(t) = x0e
− R t

t0
a(s)z2(s)ds +

∫ t

t0

e−
R t

s
a(u)z2(u)dug(s, z2(s), x(s))ds.

4. Define P : S → S by

(4.7) (Pφ)(t) = x0e
− R t

t0
a(s)z2(s)ds +

∫ t

t0

e−
R t

s
a(u)z2(u)dug(s, z2(s), φ(s))ds.

5. If P has a fixed point, it is z, and so z ∈ S which means that z(t) → 0.
6. In this example, when (*) and (**) hold we know from the lemmas that either:
a) z(t) → 0, so there is nothing to prove, or
b)|z(t)| ≥ c > 0 so

∫∞
0

a(t)z2(t)dt = ∞.
Thus, we assume that b) holds.
7. Clearly, (Pφ)(t0) = x0 and Pφ ∈ C. We now show that (Pφ)(t) → 0 as t →∞

and we take t0 = 0 for brevity.
Let ε > 0 and φ ∈ S be given and let c > 0 be found. Find t1 so that |φ(t)| < ε/2

if t ≥ t1. Then using (4.3) we obtain
∫ t

0

e−
R t

s
a(u)z2(u)du|g(s, z2(s), φ(s))|ds

≤
∫ t1

0

e−
R t

s
a(u)z2(u)dub(s)z2(s)|φ(s)|ds +

∫ t

t1

e−
R t

s
a(u)z2(u)dub(s)z2(s)|φ(s)|ds

≤ e
− R t

t1
a(u)z2(u)du

∫ t1

0

e−
R t1

s
a(u)z2(u)dub(s)z2(s)‖φ‖ds

+(ε/2)
∫ t

0

e−
R t

s
a(u)z2(u)dub(s)z2(s)ds

≤ α‖φ‖e−
R t

t1
a(u)z2(u)du + (ε/2)α.

The first term tends to zero as t →∞ and the second term can be made as small as
we please.

8. To see that we have a contraction, for φ, ψ ∈ S we have

|(Pφ)(t)− (Pψ)(t)| ≤
∫ t

t0

e−
R t

s
a(u)z2(u)du|g(s, z2(s), φ(s))− g(s, z2(s), ψ(s))|ds

≤
∫ t

t0

e−
R t

s
a(u)z2(u)dub(s)z2(s)|φ(s)− ψ(s)|ds

≤ α‖φ− ψ‖.
Thus, P does have a fixed point and it is in S.

Further work on stability by fixed point theory may be found in [9] and [10] us-
ing Schauder’s theorem, Krasnoselskii’s theorem, and an extension of Krasnoselskii’s
theorem given in [2].
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5. A Direct Stability Mapping

We arrive now at the fundamental problem. We have seen how simple it is to
produce direct fixed point mappings for existence theory. We have devised a simple
method of direct fixed point maps for periodic solutions. And we have presented
fixed point maps for stability problems under two types of variation of parameter
transformations. Our basic problem is to devise an effective way to define direct fixed
point mappings for stability problems.

Given an equation
x′ = f(t, x)

with the foreknowledge that all solutions tend to zero, we can write its integral equa-
tion as

x(t) = −
∫ ∞

t

f(s, x(s))ds.

This will be true for every solution and no initial condition is specified.
We might begin as follows. Let

S = {φ : [0,∞) → R||
∫ ∞

0

φ(t)dt| < ∞, φ ∈ C}.

For a fixed x0 6= 0 and for each φ ∈ S such that
∫∞
0

φ(t)dt 6= 0, define

(Pφ)(t) = (1/k)f(t,−
∫ ∞

t

kφ(s)ds)

where

−k

∫ ∞

0

φ(s)ds = x0.

If P has a fixed point φ, then

kφ(t) = f(t,−k

∫ ∞

t

φ(s)ds)

and

−k

∫ ∞

t

φ(s)ds

solves the initial value problem.
Clearly, conditions must be added to ensure that P maps S into itself. S must be

further specified, depending on the type of stability sought. And we must select the
proper fixed point theorem.

But successful completion of the problem will be a significant contribution to the
theory.
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