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1. Introduction

There are three fundamental fixed point principles which hold on ordered struc-
tures: The Zermelo Theorem [30] for operators which satisfies the property x ≤ f(x),
the Tarski Theorem for isotone maps [19] [9] and the Kantorovich Theorem for con-
tinuous maps [9].
All the above principles are independent of the Axiom of Choise.
We remark that many results in metric fixed point theory can be also provided the
variant of Tarski Theorem showed by Amann [5].
In this paper we present some results concerning ordered sets with monotone opera-
tors and later we state other monotonicity conditions and we apply the Tarski theorem
to differential equations.

2. The Tarski principle

Let P a partially ordered set (poset) (i.e. a set with reflexive, antisymmetric and
transitive relation ≤ ), 0 and 1 being its least and greatest elements (if they exists).
Let X a subset of a poset P . An element y ∈ P is an upper (lower) bound of X iff
x ≤ y (y ≤ x) for all x ∈ X.
The terms the least upper bound and the greatest lower bound will be abbreviated
to sup and inf, respectively.
A non empty subset X of an ordered set P is called a chain if is a totally ordered,
that is, for every pair x, y ∈ X we have x ≤ y or y ≤ x. Let P be a poset.
For f : P → P and x ∈ P ,

Of (x) := {x, f(x), f2(x), ..., fn(x), ...}
129



130 ANTAL BEGE

is called the orbit of x.
For any mapping f : P → P an element x ∈ P is called fixed point of f if x = f(x)
and we write Ff for the fixed point set.
The two fundamental results the following theorems:

Theorem 2.1. (Tarski) Let (L,≤) be a complete lattice and f : L −→ L increasing.
Then f has a fixed point.

Theorem 2.2. (Knaster-Tarski) Let (P,≤) be a partially ordered set and f : P −→ P
increasing. Assume that there is a x ∈ P such that x0 ≤ f(x0) and every chain in
{x ∈ P | x0 ≤ x} has a supremum. Then f has a fixed point.

3. Main Results

Theorem 3.1. Let (P,≤) be a poset such that every nonempty chain has upper bound,
f : P −→ P , I ⊂ N∗ a finite set of natural numbers and K = {ki | i ∈ I} ⊂ N∗

contains two relatively prime numbers. If {fki(x) | i ∈ I} totally ordered and

x ≤ min
{
fki(x) | i ∈ I

}

for all x ∈ P then Ff 6= ∅.
Proof. From Zorn lema we have that Max(P ) 6= ∅, so this set have least element m.
For m we have:

m ≤ min
{
fki(m) | i ∈ I

}

But the set
{
fki(m) | i ∈ I

}
totally ordered, so

m ≤ fki(m) ∀i ∈ I

and the maximality of m implied

fki(m) = m, ∀i ∈ I.

Because exists i, j ∈ I such that (ki, kj) = 1, we have natural numbers n and l which
satisfied the condition

nki − lkj = 1.

From this
m = fnki(m) = f1+lkj = f

(
f lkj (m)

)
= f(m)

which means that m fixed point for f .
¤

Remarks.
1. The proof implies

Max(P ) ⊂ Ff .

2. If K not contains relatively prime numbers, we have

fdij (m) = m

wherw dij = (ki, kj) and m ∈ Max(P ).
3. This theorem implies Theorem 2.1 and Theorem 2.2.
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Corollary 3.1. (Amann [5])
Let (P,≤) chain complet poset and f : P −→ P be an increasing operator. If exist
a, b ∈ P such that

a ≤ b, a ≤ f(a), f(b) ≤ b.

Then f has a least and a greatest fixed point in [a, b].

Corollary 3.2. (Taskovic [25]) Let (P,≤) be a poset such that exists a, b ∈ P for
which

a ≤ f(a) ≤ f(b) ≤ b.

and f : P −→ P be an increasing operator. If P conditionally complete, then Ff 6= ∅.
Theorem 3.2. Let (P,≤) be a poset such that every chain has an upper bound,
f : P −→ P an increasing operator, I ⊂ N∗ a finite set of natural numbers and
K = {ki | i ∈ I} ⊂ N∗ contains two relatively prime numbers. If {fki(x) | i ∈ I}
totally ordered and exists x0 such that

x0 ≤ min
{
fki(x0) | i ∈ I

}
,

then Ff 6= ∅.
Proof. Let

A =
{
x | x ≤ min

{
fki(x) | i ∈ I

}}
.

We observe that A is not empty (x0 ∈ A), and because f increasing f(A) ⊂ A.
Let one chain C of A. Then C has a supremum c. We prove that c ∈ A. Let x ∈ C,

x ≤ min
{
fki(x) | i ∈ I

}

x ≤ c

Because f increasing operator

fki(x) ≤ fki(c) ∀i ∈ I

x ≤ min
{
fki(x) | i ∈ I

} ≤ min
{
fki(c) | i ∈ I

}
, ∀x ∈ C

We take the supremum
c ≤ min

{
fki(c) | i ∈ I

}
.

Which mean that c an element of A.
From Theorem 3.1 we have that f has a fixed point.

¤
Now we try that change in the condition of Theorem 3.1 and Theorem 3.2 the mini-
mum to maximum. We have the following result.

Theorem 3.3. Let (P,≤) be a poset such that every nonempty chain has upper bound,
f : P −→ P , I ⊂ N∗ a finite set of natural numbers and K = {ki | i ∈ I} ⊂ N∗. If
{fki(x) | i ∈ I} totally ordered and

x ≤ max
{
fki(x) | i ∈ I

}

for all x ∈ P then exists i ∈ I such that Ffki 6= ∅.
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Proof. By the Zorn maximality principle we have that Max(P ) 6= ∅, so they have
one element m. For m

m ≤ max
{
fki(m) | i ∈ I

}

But
{
fki(m) | i ∈ I

}
is totally ordered which implied that exists i ∈ I, such that

m ≤ fki(m)

By the maximality of m

fki(m) = m .

¤

Theorem 3.4. Let (P,≤) be a poset such that every nonempty chain has upper bound,
f : P −→ P , I ⊂ N∗ a finite set of natural numbers and K = {ki | i ∈ I} ⊂ N∗. If
{fki(x) | i ∈ I} totally ordered and exists x0 such that

x0 ≤ max
{
f(x0), fki(x0) | i ∈ I

}

then Ff 6= ∅.
Proof. Let

A1 = {x | x ≤ f(x)} .

If A1 nonempty from Corollary 3.1 we have Ff 6= ∅.
In the next we suppose that A1 = ∅.
Let

fn(x) = max
{
fki(x0) | i ∈ I

}

and
A2 = {x | x ≤ fn(x)} .

Because A1 nonempty and

x0 ≤ max
{
f(x0), fki(x0) | i ∈ I

}

we have
f(x0) ≤ x0 ≤ fn(x0)

so A2 nonempty (x0 ∈ A2).
The monotonicity of f implied that A2 is fn invariant. We apply Corollary 3.1, where
we consider fn instead f . So for maximal element m we have m ∈ Ffn or

fn(m) = m.

But f(m) ≤ m and fn−1 increasing, which implies

m = fn(m) ≤ fn−1(m)

From the maximality of m follows that m = fn−1(m). We proved that

m ∈ Ffn ∩ Ffn−1 .

which implied that m ∈ Ff .
¤
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4. Application

In this section we study the existence and uniqueness of the bounded solution of
a boundary value problem. The proof is based on the Tarski theorem concerning the
existence of the fixed points in complete lattice.
We consider the following problem

(4.1)





d2u
dt2 = ϕ(u, t)

u(0) = −α, α > 0

where α is a given positive number.
We remark that if

ϕ(u, t) = t(e
u
t − 1)

the problem is representing the motion of a particle in an ionized field under the
influence of the Ukawa potential.
Gross in [10] obtained some conditions for the uniqueness of the solution.
In the study of the problem we apply the theorem of Tarski concerning the existence
of the fixed point in complete lattice.
Gross obtained the following result.

Theorem 4.1. ( Gross [10]) If ϕ satisfies the following conditions:
1)

ϕ ∈ C(R− × R+) and
∂f

∂u
∈ C(R− × R+)

2)
ϕ(0, s) = 0 and ϕ(u, s) ≤ 0 ∀u ∈ R−, s ∈ R+

and is nondecreasing as a function of u for every t > 0.
3)

ϕ(u, t)− u ≥ 0
and is nonincreasing as a function of u,
then there exist a unique, negativ, bounded solution of (4.1) in C2(R∗+). This solution
is nondecreasing and concave and tends to some positive constant, as r −→∞.

We first establish the existence.
Let

X = {u | u : R∗+ −→ R, −α ≤ u(t) ≤ −α f(t)
f(0)

and u(t)
f(t) is nonincreasing in t}

We introduce the following ordering relation:

u1 ≤ u2 iff u1(t) ≤ u2(t), ∀t ∈ R∗+.

X is a complete lattice.
If we apply the Tarski theorem (Theorem 2.1) to

(T1u)(t) = −α
f(t)
f(0)

− f(t)
∫ t

0

1
f2(r)

∫ ∞

r

[f(s)ϕ(u(s), s)− u(s)f ′′(s)] ds dr
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we have the following result:

Theorem 4.2. (Bege [7]) If ϕ in the problem 4.1 satisfies:
a)

ϕ ∈ C(R− × R∗+) and
∂ϕ

∂u
∈ C(R− × R∗+)

b)
ϕ(0, s) = 0 and ϕ(u, s) ≤ 0 ∀u ∈ R−, s ∈ R+

c)
There exist the function f : R+ −→ (0, 1] such that

f ∈ C2(R+), f ′′(s) ≥ 0, lim
s→∞

f ′(s) = 0, f(s) ≤ f(0) ∀s ∈ R+

for which

ϕ′u(u, s) ≤ f ′′(s)
f(s)

u ∈ R−, s ∈ R+.

The problem has a bounded solution in C2(R+).

If we consider

(T2u)(r) = −α−
∫ t

0

dr

∫ ∞

r

ϕ(s, u(s)) ds.

and we apply a uniqueness theorem (see [17]) for a boundary value problem on the
finite interval to obtain the following uniqueness result

Theorem 4.3. (Bege [7]) If ϕ in the problem 4.1 satisfies:
a)

ϕ ∈ C(R− × R∗+) and
∂ϕ

∂u
∈ C(R− × R∗+).

b)
ϕ(0, s) = 0 and ϕ(u, s) ≤ 0, ∀u ∈ R−, s ∈ R+

c)
there exist the function f : R+ −→ (0, 1] such that

f ∈ C2(R+), f ′′(s) ≥ 0, lim
s→∞

f ′(s) = 0, f(s) ≤ f(0), ∀s ∈ R+

for which

ϕ′u(u, s) ≤ f ′′(s)
f(s)

, u ∈ R−, s ∈ R+.

d)
ϕ(u, t) is nondecreasing function of u for all t > 0
then there exists a unique , negative, bounded solution u ∈ C2(R+) to 4.1.

Remark.
If

f(t) = e−t

then f satisfies c) and we obtain the Gross theorem 4.1 ([10]).
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