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Abstract. There have appeared many generalizations of the Kakutani-Fan-Glicksberg fixed point
theorem. Motivated by these generalizations we introduce the concept of fixed point property for
a pair (7,C) of classes of compact Hausdorff topological spaces; section properties and minimax
inequalities are given.
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1. INTRODUCTION

A map (or a multifunction) T : X — Y is a function from a set X into the power
set 2Y of Y; that is, a function with the values T'(z) C Y. Given two maps S: X — Y,
T:Y — Z the composite To S : X — Z is defined by (T o S)xz = T(Sz) = U{Ty :
y € Sz}

Let X and Y be topological spaces. A map T : X — Y is said to be upper
semicontinuous if for each closed set F' C Y the lower inverse of F under T, that is
T-YF)={x € X :T(z)NF # 0}, is a closed subset of X or, equivalently, if for each
open set G C Y the upper inverse of G under T, that is TTY(G) = {r € X : T(z) C
G}, is an open subset of X. Note that if Y is compact Hausdorff and Tz is closed
for each x € X, then T is upper semicontinuous if and only if the graph of T, that is
{(z,y) € X xY :y € T(x)}, is closed in X x Y. Recall also that the composite and
the product of two upper semicontinuous maps are upper semicontinuous too.

For a class of sets C and a set X we shall denote by

CX)={CeC:CcX} and C"(X)={CeC:0#£CC X}
We say that a map T : X — Y has C (resp. C*) values if for each z € X, T'(x) € C(X)
(resp. T'(z) € C*(X)).
We say that an ordered pair (7, C) consisting of two classes of compact Hausdorff
topological spaces has the fized point property provided:

i) X,Y €T = XxYeT;
(i) CeC(X),DeC(Y)=CxDeC(X xY), foreach X,Y € T;
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(iii) for each X € 7 any upper semicontinuous map 7' : X — X with C*
values has a fixed point

Four examples of pairs (7, C) having the fixed point property will be given in the
sequel.

Ex.1. 7 and C are both the class of all compact convex subsets of all Hausdorff lo-
cally convex topological vector spaces. In this case condition (iii) is satisfied according
to the Kakutani-Fan-Glicksberg fixed point theorem (see [1], [2], [3])

Ex.2. 7 is the class of all compact convex subsets of all Hausdorff locally convex
topological vector spaces and for each X € T, C(X) consists of all compact acyclic
subsets of X (recall that a topological space is acyclic if all of its reduced Cech
homology groups over rationals vanish). The product of two acyclic sets is of course
acyclic by the Kunneth formula (see [5]) and condition (iii) is satisfied according to
Theorem 7 in [6].

In order to give two other examples of pairs (7, C) with the fixed point property
we shall recollect some definitions introduced by S. Park and H. Kim (see [8] and [4]).
For a set X we shall denote by (X) the set of all nonempty finite subsets of X.

A generalized convex space or a G-convex space (X,T') consists of a topological
space X and a function I' : (X) — X such that:

(a) A,Be(X),ACB=T,4=T(A4) C I'p; and

(b) for each A € (X) with |A] = n + 1 there exists a continuous function ®4 :
A, — I'4 such that J € (A) implies ®4(Ay) C T'; (here A,, denotes the
standard n-simplex and A denotes the face of A,, coresponding to J € (4)).

For an (X;TI') a subset C of X is said to be G-convex if A € (C) implies 'y C C.
A G-convex space (X;T) is called:

(a) locally G-convex uniform space if it satisfies the following conditions:
(a1) X is a Hausdorff uniform space with the basis V;
(ag) for each V € V and x € X the set {2’/ € X : (z,2') € V} is G-convex.
(b) of type II if it is separated and satisfies the following conditions:
(by) for each z € X, {x} is G-convex;
(bz) for any compact G-convex subset Y of X and each open neighborhood
V of Y there exists an open neighborhood U of Y such that N{Z : U C
Z C X and Z is G-convex } C V
Ex.3. 7 is the class of all compact locally G-convex uniform spaces and for each
X € T, C(X) consists of all compact G-convex subsets of X. In this case condition
(iil) is satisfied according to Lemma 4 and Theorem 4 in [7].
Ex.4. 7 is the class of all compact G-convex spaces of type II and for each X € 7T,
C(X) consists of all compact G-convex subsets of X. In this case condition (iii) is
satisfied according to Theorem 2 in [4].

2. SECTION PROPERTIES
In the sequel let us fix a pair (7,C) having the fixed point property.

Theorem 2.1. Let X,Y € 7. Then for every two maps S : X - Y, T:Y — X
with C* values the composite T o S has a fized point.
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Proof. Consider the diagram

XxY2yx x5 xxy

where p(z,y) = (y,z) and (T x S)(y,z) = T'(y) x S(x). The map (T x S) op is upper
semicontinuous and by (ii) it takes C* values. By (iii) (T x S) o p has a fixed point,
i.e. for some (zg,yo) € X x Y we have (xg,y0) € (T % S)(yo, o). Hence xo € T'(yo),
Yo € S(x0) and consequently z¢ € (T o S)(xg). O

As a direct consequence of Theorem 2.1 we have

Theorem 2.2. Let X, Y € T and M, N be two open subsets of X XY such that
MUN =X xY. Suppose that the following conditions are satisfied:

(2.1) Foreachz e X, {yeY :(x,y) ¢ M} €C(Y).

(2.2) ForeachyeY,{zxe X :(z,y) ¢ N} € C(X).
Then at least one of the following assertions holds:

(a) There exists a point xg € X such that {xo} x Y C M.
(b) There exists a point yo € Y such that X x {yo} C N.

Proof. Let M/ = (X x Y)\M and N' = (X xY)\N. Define S: X -Y, T:Y —- X
by putting

Sx)={yeY:(r,y) e M'}, T(y)={r e X:(z,y) € N'}.

Since M’ is closed in X x Y, each S(x) is closed in Y and the graph of S is closed
in X x Y. Hence S is upper semicontinuous and by (2.1) it follows that S takes C
values. Similarly we can prove that T is upper semicontinuous and takes C values.
Suppose that both assertions (a) and (b) are not true. Then for each z € X
there exists y € Y such that (z,y) € M’, that is S has C* values and similarly T
has C* values. By Theorem 2.1, T o S has a fixed point, or equivalently there exists
(x0,90) € X x Y such that yo € S(x¢) and 29 € T(xp). Then (xo,y0) € M' N N’
which contradicts M UN = X x Y. O

Corollary 2.3. Let X,Y € T and N be an open subset of X XY satisfying:
(2.3) There exists a upper semicontinuous map T : X — Y with C* values such
that graphT C N.
(2.4) ForeachyeY, {x € X : (x,y) ¢ N} € C(X).
Then there exists a point yo € Y such that X x {yo} C N.

Proof. Consider the set M = X x Y \ graphT. From hypothesis it readily follows

that:
M is an open subset of X x Y

foreachz e X, {yeY : (z,y) ¢ M} € C(Y);
for cach z € X, {} xY ¢ M.

Moreover M UN = X x Y. The conclusion follows from Theorem 2.2 O

Corollary 2.4. Let X € T and M be an open subset of X x X satisfying:
(2.5) A={(z,x):x e X} C M.
(2.6) Foreachzxe X, {ye X :(x,y) ¢ M} € C(X).
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Then there exists a point xg € X such that {zo} x X C M.

Proof. Apply Theorem 2.2 in the case Y = X, N = X x X\A and observe that the
assertion (b) in the conclusion of this theorem cannot take place. O

3. MINIMAX INEQUALITIES

Let X € 7. A function f: X — R will be called C-quasiconcave if for each A € R
the set {x € X : f(z) > A} € C(X) and C-quasiconvez if —f is C-quasiconcave.

Theorem 3.1. Let X,Y € 7 and f,g : X XY — R two real valued functions
satisfying:
(31) f<g.
(3.2) f is upper semicontinuous and g is lower semicontinuous on X X Y.
(3.3) For each z € X, f(x,-) is C-quasiconcave on 'Y .
(3.4) For eachy €Y, g(-,y) is C-quasiconvex on X.
Then, given any o, f € R 8 < a, at least one of the following assertions holds:
(a) There exists xg € X such that f(zg,y) < a for eachy €Y.
(b) There exists yo € Y such that g(x,yo) > 8 for eachx € X.

Proof. Apply Theorem 2.2 to the sets:
M ={(z,y) € X xY: f(z,y) <o}, N={(z,y) € X xY :g(z,y) > B}

(From the hypothesis (3.1)-(3.4) it follows readily that M, N are open in X x Y,
M UN = X and assumptions (2.1)-(2.2) of Theorem 2.2 are verified. The desired
result follows now from Theorem 2.2. O

Corollary 3.2. Under the hypothesis of Theorem 3.1 the following inequality holds

inf max f(x,y) < su mln x

JInf maxf(z,y) supr ng (e, y)-

Proof. First let us observe that if f is upper semicontinuous on X x Y, then for

each x € X, f(z,-) is also an upper semicontinuous function of y on Y and therefore

its maximum ma;cf(%y) on the compact set Y exists. Similary in;f(g(m,y) can be
ye T€

replaced by géi)l(lg(,% Y).

Suppose the conclusion were false and choose two real numbers «, 8 such that

supmlng(x y<B<a< 1nf maxf(a: Y).
yeyrG

We prove that neither the assertion (a) nor the assertion (b) of the conclusion of
Theorem 3.1 cannot take place.
If (a) happens, then

inf maxf(a; y) < maxf(a:o, y) < a; a contradiction.
rzeX yeY ye

If (b) happens, then

supming(z,y) > mmg(x Yo) > (; a contradiction again.
yeyzeX
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Corollary 3.3. Let X € T and f,g : X x X — R two real-valued functions
satisfying conditions (3.1)-(3.4) of Theorem 3.1. Then we have

inf < i .
nf f(z,2) < sgggg)rgg(x, Y)

Proof. We may assume that sup f(z,z) > —oo. Apply Theorem 3.1 in the case
zeX
Y=X a= ing’(f(x,x) , 8= ing’(f(x,x) — &, where € > 0 is arbitrarily fixed. Since
FAS T

the assertion (a) of the conclusion of Theorem 3.1 cannot take place, it follows that
there exists yg € X such that

i , > inf JY) — €.
ming(z, yo) > inf f(z,y) — e
Clearly this implies the desired minimax inequality. O
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