Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 197-202 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

PAIRS OF CLASSES OF TOPOLOGICAL SPACES WITH THE FIXED POINT PROPERTY

MIRCEA BALAJ

Department of Mathematics University of Oradea Str. Armatei Române 3700, Oradea, ROMANIA E-mail: mbalaj@math.uoradea.ro

Abstract. There have appeared many generalizations of the Kakutani-Fan-Glicksberg fixed point theorem. Motivated by these generalizations we introduce the concept of fixed point property for a pair $(\mathcal{T}, \mathcal{C})$ of classes of compact Hausdorff topological spaces; section properties and minimax inequalities are given.

Keywords: upper semicontinuous map, fixed point property, section property, minimax inequality. AMS Subject Classification: 54H25, 49J35

1. INTRODUCTION

A map (or a multifunction) $T: X \to Y$ is a function from a set X into the power set 2^Y of Y; that is, a function with the values $T(x) \subset Y$. Given two maps $S: X \to Y$, $T: Y \to Z$ the composite $T \circ S: X \to Z$ is defined by $(T \circ S)x = T(Sx) = \bigcup \{Ty: y \in Sx\}$.

Let X and Y be topological spaces. A map $T : X \to Y$ is said to be *upper* semicontinuous if for each closed set $F \subset Y$ the *lower inverse* of F under T, that is $T^{-1}(F) = \{x \in X : T(x) \cap F \neq \emptyset\}$, is a closed subset of X or, equivalently, if for each open set $G \subset Y$ the *upper inverse* of G under T, that is $T^{+1}(G) = \{x \in X : T(x) \subset G\}$, is an open subset of X. Note that if Y is compact Hausdorff and Tx is closed for each $x \in X$, then T is upper semicontinuous if and only if the graph of T, that is $\{(x, y) \in X \times Y : y \in T(x)\}$, is closed in $X \times Y$. Recall also that the composite and the product of two upper semicontinuous maps are upper semicontinuous too.

For a class of sets \mathcal{C} and a set X we shall denote by

$$\mathcal{C}(X) = \{ C \in \mathcal{C} : C \subset X \}$$
 and $\mathcal{C}^*(X) = \{ C \in \mathcal{C} : \emptyset \neq C \subset X \}.$

We say that a map $T: X \to Y$ has \mathcal{C} (resp. \mathcal{C}^*) values if for each $x \in X$, $T(x) \in \mathcal{C}(X)$ (resp. $T(x) \in \mathcal{C}^*(X)$).

We say that an ordered pair $(\mathcal{T}, \mathcal{C})$ consisting of two classes of compact Hausdorff topological spaces has the *fixed point property* provided:

- (i) $X, Y \in \mathcal{T} \Rightarrow X \times Y \in \mathcal{T};$
- (ii) $C \in \mathcal{C}(X), D \in \mathcal{C}(Y) \Rightarrow C \times D \in \mathcal{C}(X \times Y), \text{ for each } X, Y \in \mathcal{T};$

¹⁹⁷

(iii) for each $X \in \mathcal{T}$ any upper semicontinuous map $T: X \to X$ with \mathcal{C}^* values has a fixed point

Four examples of pairs $(\mathcal{T}, \mathcal{C})$ having the fixed point property will be given in the sequel.

Ex.1. \mathcal{T} and \mathcal{C} are both the class of all compact convex subsets of all Hausdorff locally convex topological vector spaces. In this case condition (iii) is satisfied according to the Kakutani-Fan-Glicksberg fixed point theorem (see [1], [2], [3])

Ex.2. \mathcal{T} is the class of all compact convex subsets of all Hausdorff locally convex topological vector spaces and for each $X \in \mathcal{T}$, $\mathcal{C}(X)$ consists of all compact acyclic subsets of X (recall that a topological space is *acyclic* if all of its reduced Čech homology groups over rationals vanish). The product of two acyclic sets is of course acyclic by the Kunneth formula (see [5]) and condition (iii) is satisfied according to Theorem 7 in [6].

In order to give two other examples of pairs $(\mathcal{T}, \mathcal{C})$ with the fixed point property we shall recollect some definitions introduced by S. Park and H. Kim (see [8] and [4]). For a set X we shall denote by $\langle X \rangle$ the set of all nonempty finite subsets of X.

A generalized convex space or a G-convex space (X, Γ) consists of a topological space X and a function $\Gamma : \langle X \rangle \to X$ such that:

(a) $A, B \in \langle X \rangle, A \subset B \Rightarrow \Gamma_A = \Gamma(A) \subset \Gamma_B$; and

(b) for each $A \in \langle X \rangle$ with |A| = n + 1 there exists a continuous function $\Phi_A : \Delta_n \to \Gamma_A$ such that $J \in \langle A \rangle$ implies $\Phi_A(\Delta_J) \subset \Gamma_J$ (here Δ_n denotes the standard *n*-simplex and Δ_J denotes the face of Δ_n corresponding to $J \in \langle A \rangle$).

For an $(X; \Gamma)$ a subset C of X is said to be G-convex if $A \in \langle C \rangle$ implies $\Gamma_A \subset C$. A G-convex space $(X; \Gamma)$ is called:

- (a) locally G-convex uniform space if it satisfies the following conditions: (a₁) X is a Hausdorff uniform space with the basis \mathcal{V} ;
 - (a₂) for each $V \in \mathcal{V}$ and $x \in X$ the set $\{x' \in X : (x, x') \in V\}$ is G-convex.
- (b) of type II if it is separated and satisfies the following conditions:
 - (b₁) for each $x \in X$, $\{x\}$ is G-convex;
 - (b₂) for any compact G-convex subset Y of X and each open neighborhood V of Y there exists an open neighborhood U of Y such that $\cap \{Z : U \subset Z \subset X \text{ and } Z \text{ is } G\text{-convex } \} \subset V$

Ex.3. \mathcal{T} is the class of all compact locally *G*-convex uniform spaces and for each $X \in \mathcal{T}$, $\mathcal{C}(X)$ consists of all compact *G*-convex subsets of *X*. In this case condition (iii) is satisfied according to Lemma 4 and Theorem 4 in [7].

Ex.4. \mathcal{T} is the class of all compact *G*-convex spaces of type II and for each $X \in \mathcal{T}$, $\mathcal{C}(X)$ consists of all compact *G*-convex subsets of *X*. In this case condition (iii) is satisfied according to Theorem 2 in [4].

2. Section properties

In the sequel let us fix a pair $(\mathcal{T}, \mathcal{C})$ having the fixed point property.

Theorem 2.1. Let $X, Y \in \mathcal{T}$. Then for every two maps $S : X \to Y$, $T : Y \to X$ with \mathcal{C}^* values the composite $T \circ S$ has a fixed point.

198

PAIRS OF CLASSES OF TOPOLOGICAL SPACES WITH THE FIXED POINT PROPERTY 199

Proof. Consider the diagram

$$X \times Y \xrightarrow{p} Y \times X \xrightarrow{T \times S} X \times Y$$

where p(x,y) = (y,x) and $(T \times S)(y,x) = T(y) \times S(x)$. The map $(T \times S) \circ p$ is upper semicontinuous and by (ii) it takes \mathcal{C}^* values. By (iii) $(T \times S) \circ p$ has a fixed point, i.e. for some $(x_0, y_0) \in X \times Y$ we have $(x_0, y_0) \in (T \times S)(y_0, x_0)$. Hence $x_0 \in T(y_0)$, $y_0 \in S(x_0)$ and consequently $x_0 \in (T \circ S)(x_0)$. \square

As a direct consequence of Theorem 2.1 we have

Theorem 2.2. Let $X, Y \in \mathcal{T}$ and M, N be two open subsets of $X \times Y$ such that $M \cup N = X \times Y$. Suppose that the following conditions are satisfied:

(2.1) For each $x \in X$, $\{y \in Y : (x, y) \notin M\} \in \mathcal{C}(Y)$.

(2.2) For each $y \in Y$, $\{x \in X : (x, y) \notin N\} \in \mathcal{C}(X)$.

Then at least one of the following assertions holds:

- (a) There exists a point $x_0 \in X$ such that $\{x_0\} \times Y \subset M$.
- (b) There exists a point $y_0 \in Y$ such that $X \times \{y_0\} \subset N$.

Proof. Let $M' = (X \times Y) \setminus M$ and $N' = (X \times Y) \setminus N$. Define $S: X \to Y, T: Y \to X$ by putting

$$S(x) = \{ y \in Y : (x, y) \in M' \}, \ T(y) = \{ x \in X : (x, y) \in N' \}.$$

Since M' is closed in $X \times Y$, each S(x) is closed in Y and the graph of S is closed in $X \times Y$. Hence S is upper semicontinuous and by (2.1) it follows that S takes C values. Similarly we can prove that T is upper semicontinuous and takes \mathcal{C} values.

Suppose that both assertions (a) and (b) are not true. Then for each $x \in X$ there exists $y \in Y$ such that $(x, y) \in M'$, that is S has \mathcal{C}^* values and similarly T has \mathcal{C}^* values. By Theorem 2.1, $T \circ S$ has a fixed point, or equivalently there exists $(x_0, y_0) \in X \times Y$ such that $y_0 \in S(x_0)$ and $x_0 \in T(x_0)$. Then $(x_0, y_0) \in M' \cap N'$ which contradicts $M \cup N = X \times Y$.

Corollary 2.3. Let $X, Y \in \mathcal{T}$ and N be an open subset of $X \times Y$ satisfying:

- (2.3) There exists a upper semicontinuous map $T: X \to Y$ with \mathcal{C}^* values such that $graphT \subset N$.
- (2.4) For each $y \in Y$, $\{x \in X : (x, y) \notin N\} \in \mathcal{C}(X)$.

Then there exists a point $y_0 \in Y$ such that $X \times \{y_0\} \subset N$.

Proof. Consider the set $M = X \times Y \setminus \text{graph}T$. From hypothesis it readily follows that:

- $\begin{cases} M \text{ is an open subset of } X \times Y; \\ \text{for each } x \in X, \ \{y \in Y : (x, y) \notin M\} \in \mathcal{C}(Y); \\ \text{for each } x \in X, \ \{x\} \times Y \not \subset M. \end{cases}$

Moreover $M \cup N = X \times Y$. The conclusion follows from Theorem 2.2

Corollary 2.4. Let $X \in \mathcal{T}$ and M be an open subset of $X \times X$ satisfying:

 \square

(2.5) $\Delta = \{(x, x) : x \in X\} \subset M.$

(2.6) For each $x \in X$, $\{y \in X : (x, y) \notin M\} \in \mathcal{C}(X)$.

Then there exists a point $x_0 \in X$ such that $\{x_0\} \times X \subset M$.

Proof. Apply Theorem 2.2 in the case Y = X, $N = X \times X \setminus \Delta$ and observe that the assertion (b) in the conclusion of this theorem cannot take place.

3. MINIMAX INEQUALITIES

Let $X \in \mathcal{T}$. A function $f: X \to \mathbb{R}$ will be called *C*-quasiconcave if for each $\lambda \in \mathbb{R}$ the set $\{x \in X : f(x) \ge \lambda\} \in \mathcal{C}(X)$ and *C*-quasiconvex if -f is *C*-quasiconcave.

Theorem 3.1. Let $X, Y \in \mathcal{T}$ and $f, g : X \times Y \to \mathbb{R}$ two real valued functions satisfying:

(3.1) $f \leq g$.

(3.2) f is upper semicontinuous and g is lower semicontinuous on $X \times Y$.

(3.3) For each $x \in X$, $f(x, \cdot)$ is C-quasiconcave on Y.

(3.4) For each $y \in Y$, $g(\cdot, y)$ is C-quasiconvex on X.

Then, given any $\alpha, \beta \in \mathbb{R}$ $\beta < \alpha$, at least one of the following assertions holds:

(a) There exists $x_0 \in X$ such that $f(x_0, y) < \alpha$ for each $y \in Y$.

(b) There exists $y_0 \in Y$ such that $g(x, y_0) > \beta$ for each $x \in X$.

Proof. Apply Theorem 2.2 to the sets:

$$M = \{ (x, y) \in X \times Y : f(x, y) < \alpha \}, \ N = \{ (x, y) \in X \times Y : g(x, y) > \beta \}.$$

From the hypothesis (3.1)-(3.4) it follows readily that M, N are open in $X \times Y$, $M \cup N = X$ and assumptions (2.1)-(2.2) of Theorem 2.2 are verified. The desired result follows now from Theorem 2.2.

Corollary 3.2. Under the hypothesis of Theorem 3.1 the following inequality holds

$$\inf_{x \in X} \max_{y \in Y} f(x, y) \le \sup_{y \in Y} \max_{x \in X} g(x, y)$$

Proof. First let us observe that if f is upper semicontinuous on $X \times Y$, then for each $x \in X$, $f(x, \cdot)$ is also an upper semicontinuous function of y on Y and therefore its maximum $\max_{y \in Y} f(x, y)$ on the compact set Y exists. Similarly $\inf_{x \in X} g(x, y)$ can be replaced by $\min_{x \in X} g(x, y)$.

Suppose the conclusion were false and choose two real numbers α, β such that $\underset{y \in Y^{x \in X}}{\operatorname{supmin}} g(x, y) < \beta < \alpha < \inf_{x \in X} \max_{y \in Y} f(x, y).$

We prove that neither the assertion (a) nor the assertion (b) of the conclusion of Theorem 3.1 cannot take place.

If (a) happens, then

$$\inf_{x \in X} \max_{y \in Y} f(x, y) \le \max_{y \in Y} f(x_0, y) \le \alpha; \text{ a contradiction.}$$

If (b) happens, then

$$\sup_{y \in Y} \min_{x \in X} g(x, y) \ge \min_{x \in X} g(x, y_0) \ge \beta; \text{ a contradiction again.}$$

PAIRS OF CLASSES OF TOPOLOGICAL SPACES WITH THE FIXED POINT PROPERTY 201

Corollary 3.3. Let $X \in \mathcal{T}$ and $f, g : X \times X \to \mathbb{R}$ two real-valued functions satisfying conditions (3.1)-(3.4) of Theorem 3.1. Then we have

$$\inf_{x \in X} f(x, x) \le \sup_{y \in X} \min_{x \in X} g(x, y).$$

Proof. We may assume that $\sup_{x \in X} f(x, x) > -\infty$. Apply Theorem 3.1 in the case Y = X, $\alpha = \inf_{x \in X} f(x, x)$, $\beta = \inf_{x \in X} f(x, x) - \varepsilon$, where $\varepsilon > 0$ is arbitrarily fixed. Since the assertion (a) of the conclusion of Theorem 3.1 cannot take place, it follows that there exists $y_0 \in X$ such that

$$\min_{x \in X} g(x, y_0) > \inf_{x \in X} f(x, y) - \varepsilon.$$

Clearly this implies the desired minimax inequality.

References

- K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. USA, 38(1952), 121-126.
- [2] I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3(1952), 170-174.
- $[3] S. Kakutani, A \ generalization \ of \ Brouwer's \ fixed-point \ theorem, \ Duke \ Math. \ J. \ 8(1941), \ 457-459.$
- [4] H. Kim, Fixed point theorems on generalized convex spaces, J. Korean. Math. Soc. 35(1998), 491-502.
- [5] W. S. Massey, Singular Homology Theory, Springer-Verlag, New York, 1980.
- [6] S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, Fixed point Theory and Applications (K.-K. Tan, ed.), World Sci. Publ. River Edge, NJ, 1992, pp. 248-277.
- [7] S. Park, Remarks on fixed point theorems for generalized convex spaces, Proc. Internat. Conf. on Math. Anal. Appl., (Chinju, 1998) 1-A, 1999, pp. 95-104.
- [8] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. SNU, 18(1993), 1-21.