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Abstract. We study the convergence behavior of a relaxed Cimmino type method of finding almost
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1. Introduction

Let (Ω,A, µ) be a complete probability space, B a separable reflexive Banach space
and C a closed, convex, nonempty subset of B. Suppose that Tω : C → C, ω ∈ Ω, is
measurable family of operators, that is, for each x ∈ B, the function T•(x) : Ω → B,
given by T•(x)(ω) = Tω(x) is measurable.

Our aim is to prove well-definedness and convergence of an algorithm for computing
almost common fixed points of measurable families of operators. Recall that a point
x∗ ∈ C such that

µ({ω ∈ Ω : Tω(x∗) = x∗}) = 1,

is called an almost common fixed point of the measurable family of operators Tω,
ω ∈ Ω. The collection of almost common fixed points of Tω, ω ∈ Ω, is denoted
Afix(T•).

The algorithm we have in mind is the following iterative procedure of generating
points xk in B starting from an initial point x0 chosen arbitrarily in C :

(1.1) xk+1 = (1− λk)x + λk

∫

Ω

Tω(x)dµk(ω),

where {λk}k∈N is a sequence in (0, 1] and µk is a sequence of complete probability
measures on (Ω,A). It is usually called the relaxed Cimmino type method.

The basic idea of algorithm (1.1) originates in Cimmino’s classical method of solv-
ing systems of linear equalities (see [13]). Kammerer and Nashed [14] have expanded
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this idea to solving linear operator equations in Hilbert spaces. The Cimmino type
algorithm they consider is exactly algorithm (1.1) with Tω being metric projections
on some closed convex sets, all λk = 1 and all µk = µ (when B is finite dimensional
and Ω is finite this is precisely the algorithm proposed by Cimmino). Convergence
of the same unrelaxed Cimmino type procedure was analyzed in Banach spaces by
[1]-[4]. In a finite dimensional setting and for a finite set Ω the relaxed Cimmino type
algorithm was extensively studied during the last decade. The main results in this
respect are summarized in [12] (see also the references therein). In Hilbert spaces and
for firmly nonexpansive operators the relaxed Cimmino type algorithm was discussed
in [11]. In the paper [8] is proved weak convergence of it in Banach spaces for the case
where Tω are Bregman projections on closed convex nonempty sets with nonempty
intersection. This note is aimed at showing that the relaxed Cimmino type algorithm
still produces weak approximations of almost common fixed points of the operators Tω

when placed in (not necessarily Hilbertian) Banach spaces provided that the family of
operators is totally nonexpansive. The practical meaning of this result is that when
applied to (eventually infinite) totally nonexpansive families of operators, even out of
the Hilbertian context, the Cimmino type algorithms preserves its weak convergence
properties even if some errors occur in the process of computing the iterates. This is
relevant because computing iterates in Cimmino type procedures involves determin-
ing integrals of often inexactly computable functions. Little is known today about
the strong convergence of the Cimmino type method. From [10] we know that the set
of totally nonexpansive operators, whose orbits do not converge strongly, is ”rare”.
This means that unrelaxed Cimmino procedures will more often than not converge
strongly. For a discussion of some cases in which strong convergence occurs see [2],
[4] and [14].

2. Preliminaries

In this section we present several notions, notations and results, which will be
used in our convergence analysis of the relaxed Cimmino type method. We start
by recalling that the measurable family of operators Tω : C → C, ω ∈ Ω, is called
integrable if, for each x ∈ C, the Bochner integral

∫
Ω

Tω(x)dµ(ω) exists. A lower
semicontinuous convex function f : B → (−∞, +∞] is called a Bregman function on
the set C ⊆ Int(Dom(f)) (cf. [12]) if, for each x ∈ C, the following conditions are
satisfied:

(i) f is Gâteaux differentiable and totally convex at x (see [7]);
(ii) For any α ≥ 0, the set

Rf
α(x; C) = {y ∈ C;Df (x, y) ≤ α}

is bounded.
The most typical example of Bregman functions are the functions ‖ · ‖r, with

r ∈ (1,+∞), when B is a uniformly convex and smooth Banach space (see [6]). The
measurable family of operators Tω, ω ∈ Ω, is called totally nonexpansive with respect
to the Bregman function f : B → (−∞,+∞] on the set C, if there exists a point
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z ∈ C such that, for each x ∈ C,

(2.1) Df (z, Tω(x)) + Df (Tω(x), x) ≤ Df (z, x), µ− a.e.(Ω)

A point z ∈ C such that (2.1) holds for each x ∈ C is called a nonexpansivity pole
with respect to f of Tω, ω ∈ Ω. The set of all nonexpansivity poles with respect to f
of the family Tω, ω ∈ Ω, is denoted Nexf (T•). Clearly, Nexf (T•) ⊆ Afix(T•). Recall
(cf. [7, Corollary 2.2.5]) that totally nonexpansive families of operators are always
integrable with respect to any complete probability measure on Ω.

Our purpose is to show that, if there exists a continuously differentiable Breg-
man function f : B → (−∞, +∞] on the closed, convex, nonempty subset C ⊆
Int(Dom(f)) with respect to which the measurable family of operators Tω, ω ∈ Ω, is
totally nonexpansive and that, for some z ∈ Nexf (T•), the function Df (z, ·) is convex
then, for any sequence of complete probability measures {µk}k∈N on (Ω,A), and for
each sequence {λk}k∈N ⊆ (0, 1] bounded away from zero, the operators Tk : C → C
given by

(2.2) Tk(x) = (1− λk)x + λk

∫

Ω

Tω(x)dµk(ω),

are well defined for k ∈ N and, under some additional conditions, their orbits converge
weakly to almost common fixed points of the family of operators Tω, ω ∈ Ω. The
following result shows that, under some conditions, orbits of the sequence of opera-
tors Tk approximate weakly almost common fixed points of the totally nonexpansive
family of operators Tω. To be precise, an orbit of the sequence of operators {Tk},
k ∈ N, is a sequence {xk}k∈N in B such that xk+1 = Tk(xk), k ∈ N that is, a relaxed
Cimmino type method generated sequence. Recall that the measure µk on (Ω,A) is
called absolutely continuous with respect to the measure µ, and we write µk ¿ µ,
if µk(E) = 0 for any measurable set E for which µ(E) = 0. The Radon-Nikodym
derivative ( see, for instance, [15]) of the µ - absolutely continuous measure µk with
respect to µ, is the µ - a.e. unique measurable function dµk

dµ : Ω → [−∞,+∞] such
that

µk(A) =
∫

A

dµk

dµ
dµ(ω), A ∈ A.

The function f is said to satisfy the separability requirement on C, if for any two
sequences {yk}k∈N and {zk}k∈N in C which converge weakly to y and z, respectively,
y 6= z implies that

lim inf
k→∞

|〈f ′(yk)− f ′(zk), y − z〉| > 0.

Our convergence argument involves the following property of the operators Tk, k ∈ N,
given by (2.2).

Lemma 1 If there exists a differentiable Bregman function f : B → (−∞, +∞]
on C, with respect to which the measurable family of operators Tω, ω ∈ Ω, is totally
nonexpansive and for some z ∈ Nexf (T•), the function Df (z, ·) is convex on C then,
for any sequence of probability measures {µk}k∈N on (Ω,A), and for any sequence
{λk}k∈N ⊆ (0, 1], the operators Tk, k ∈ N, given by (2.2) are totally nonexpansive
with respect to f .



152 DAN BUTNARIU AND ISRAELA MARKOWITZ

Proof: Let z ∈ Nexf (T•) be such that Df (z, ·) is convex then, for any x ∈ C, we
have

Df (z,Tk(x)) + Df (Tk(x), x) ≤

(1− λk)Df (z, x) + λk

[
Df (z,

∫

Ω

Tω(x)dµk(ω) + Df (
∫

Ω

Tω(x)dµk(ω), x)
]
≤

(1− λk)Df (z, x) + λk

∫

Ω

[Df (z, Tω(x)) + Df (Tω(x), x)] dµk(ω) ≤

(1− λk)Df (z, x) + λk

∫

Ω

Df (z, x)dµk(ω) = Df (z, x),

where the second inequality follows from Jensen’s inequality. Hence, the operators
Tk, are totally nonexpansive with respect to the Bregman function f .

3. The main result

We are now in position to prove a convergence result for the relaxed Cimmino type
algorithm.

Theorem 1 Suppose that the measurable family of operators Tω, ω ∈ Ω, is totally
nonexpansive with respect to the continuously differentiable Bregman function f on C
and that, for some z ∈ Nexf (T•), the function Df (z, ·) is convex. Let {λk}k∈N be a
sequence of numbers such that for some positive number λ we have λk ∈ [λ, 1], for all
k ∈ N. If for each k ∈ N the complete probability measure µk is absolutely continuous
with respect to µ and if, for µ−almost all ω ∈ Ω,

(3.1) lim inf
k→∞

dµk

dµ
(ω) > 0,

then, any orbit {xk}k∈N of {Tk}k∈N, has the following properties:
(i) The sequence {xk}k∈N is bounded, has weak accumulation points and, for

µ−almost all ω ∈ Ω, we have

(3.2) lim inf
k→∞

Df (Tω(xk), xk) = 0;

(ii) If, in addition, for µ−almost all ω ∈ Ω, the function x → Df (Tω(x), x) is
sequentially weakly lower semicontinuous, then

(a) Any weak accumlation point of {xk}k∈N is contained in Afix(T•);
(b) The sequence {xk}k∈N converges weakly to a point in Afix(T•) whenever either

Afix(T•) is a singleton or Afix(T•) = Nexf (T•) and f satisfies the separability
requirement.

Proof: Define the function Υf
k : C → [0, +∞] by

(3.3) Υf
k(x) =

∫

Ω

Df (Tω(x), x)dµk(ω).

Note that this function is well defined and everywhere finite on C since it was proven
in [7, Corollary 2.2.5] that for any x ∈ C, the function ω → Df (Tω(x), x) is integrable
(this function is measurable because Df (z, ·) is continuous since f is continuously



A METHOD FOR COMPUTING ALMOST COMMON FIXED POINTS 153

differentiable). Let z ∈ Nexf (T•) be such that Df (z, ·) is convex. For any x ∈ C, we
have

(3.4) Df (z, Tω(x)) + Df (Tω(x), x) ≤ Df (z, x), µ− a.e.

Integrating (3.4) we get

Df (z,

∫

Ω

Tω(x)dµk(ω)) ≤
∫

Ω

Df (z, Tω(x))dµk(ω) ≤ Df (z, x)−Υf
k(x),

where the first inequality follows from Jensen’s inequality since Df (z, ·) is convex and
continuous. Using the last inequality, we get

Df (z,Tk(x)) ≤ (1− λk)Df (z, x) + λkDf (z,

∫

Ω

Tω(x)dµk(ω))(3.5)

≤ (1− λk)Df (z, x) + λk(Df (z, x)−Υf
k(x))

= Df (z, x)− λkΥf
k(x)

Writing this for x = xk we deduce that the sequence {Df (z, xk)}k∈N is nonincreasing
and, hence, bounded by α = Df (z, x0). Therefore, the sequence {xk}k∈N is contained
in the bounded set Rf

α(z, C). By consequence, the sequence {xk}k∈N has weakly
convergent subsequences and, thus, it has weak accumulation points. Observe that,
according to (3.5), for any nonnegative integer k, we have

0 ≤ Υf
k(xk) ≤ 1

λk
(Df (z, xk)−Df (z, xk+1)) ≤ 1

λ
(Df (z, xk)−Df (z, xk+1)).

Since the sequence {Df (z, xk)}k∈N is nonincreasing and bounded, it is convergent.
By consequence, the last inequality implies that limk→∞Υf

k(xk) = 0.
According to the Radon-Nikodym Theorem (see, e.g., [15, Theorem 4.6]), we have

(3.6) Υf
k(x) =

∫

Ω

Df (Tω(x), x)
dµk

dµ
(ω)dµ(ω).

Combining the last equation with Fatou’s lemma, we get

0 ≤
∫

Ω

lim inf
k→∞

[
Df (Tω(xk), xk)

dµk

dµ
(ω)

]
dµ(ω)

≤ lim inf
k→∞

∫

Ω

[
Df (Tω(xk), xk)

dµk

dµ
(ω)

]
dµ(ω)

= lim
k→∞

Υf
k(xk) = 0,

and we deduce that

(3.7) lim inf
k→∞

Df (Tω(xk), xk)
dµk

dµ
(ω) = 0, µ− a.e.

Therefore, for µ-almost all ω ∈ Ω

0 = lim inf
k→∞

Df (Tω(xk), xk)
dµk

dµ
(ω)

≥
[

lim inf
k→∞

Df (Tω(xk), xk)
]
·
[

lim inf
k→∞

dµk

dµ
(ω)

]
≥ 0,
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which, according to (3.1), proves (3.2). This completes the proof of (i).
For proving (ii), let {xjk}k∈N be any weakly convergent subsequence of {xk}k∈N

and denote by x∗ its weak limit. Let ω ∈ Ω be such that (3.2) holds and such that the
function x → Df (Tω(x), x) is sequentially weakly lower semicontinuous. According
to the definition of the modulus of total convexity (see [7]) we have

νf (x∗, ‖Tω(x∗)− x∗‖) ≤ Df (Tω(x∗), x∗)

≤ lim inf
k→∞

Df (Tω(xjk), xjk) = 0, µ− a.e.,

where the second inequality results from the sequentially weak lower semicontinuity
of x → Df (Tω(x), x). Consequently, we have

νf (x∗, ‖Tω(x∗)− x∗‖) = 0, a.e.,

and this cannot hold unless Tω(x∗) = x∗, a.e., because f is totally convex. Since
ω ∈ Ω is any of the elements for which (3.2) is satisfied, it follows that x∗ ∈ Afix(T•).
This proves (a).

For proving (b) suppose, by contradiction, that the sequence {xk}k∈N does not
converge weakly. Then, {xk}k∈N has two weakly convergent subsequences {xtk}k∈N
and {xsk}k∈N whose weak limits, x′ and x′′, respectively, are different. Note that

|〈f ′(xtk)− f ′(xsk), x′ − x′′〉|(3.8)
= |(Df (x′, xtk)−Df (x′, xsk))− (Df (x′′, xtk)−Df (x′′, xsk))|
≤ |Df (x′, xtk)−Df (x′, xsk)|+ |Df (x′′, xtk)−Df (x′′, xsk)|.

According to (a), x′, x′′ ∈ Afix(T•) = Nexf (T•). Therefore, for x = xk, Lemma
1 implies that the sequences {Df (x′, xk)}k∈N and {Df (x′′, xk)}k∈N converge nonin-
creasingly. By taking in inequality (3.8) the limit for k →∞, one obtains

lim inf
k→∞

|〈f ′(xtk)− f ′(xsk), x′ − x′′〉| = 0

and this contradicts the separability requirement.
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