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ITERATIVE APPROXIMATION OF FIXED POINTS FOR
PSEUDO-CONTRACTIVE OPERATORS

VASILE BERINDE
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Faculty of Sciences North University of Baia Mare

Abstract. For a nonexpansive (Liptschitzian) operator F which is not a strict contraction, the
Picard iteration does not converge generally to a fixed point. By adding some pseudo-contractive
type assumptions, it is possible to show that several other iterations (Krasnoselski-Schaefer, Mann,
Ishikawa) converge to a fixed point of F .

The main aim of the paper is to survey some old and recent results especially related to the

convergence of Krasnoselski-Schaefer iteration in the class of generalized pseudo-contractive and

lipschitzian operators.

1. Introduction

Many of the most important nonlinear problems of applied mathematics reduce
to finding solutions of nonlinear functional equations (integral equations, differential
equations etc.) which can be formulated in terms of finding the fixed points of a given
nonlinear operator of an infinite dimensional function space X into itself:

(1) x = Tx

There is a classical general existence theory of fixed points for mappings satisfying
compactness conditions associated with the names of Brower, Schander, Leray etc. as
well as an abundant literature of metrical fixed point theorems, which establish the
existence (and uniqueness) of fixed points for maps satisfying a variety of contractive
conditions ([16]). The first basic result is the classical Picard-Banach-Caccioppoli
principle

THEOREM 0. Let (X, d) be a complete metric space and T : X → X a strict
contraction, that is, there exists α, 0 ≤ α < 1 such that

(2) d(Tx, Ty) ≤ α · d(x, y) for all x, y ∈ X

Then the Picard iteration (the sequence of successive approximation) (xn), given
by

(3) xn = T (xn−1) = Tn(x0), n = 1, 2, ...
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converges to the unique fixed point x∗ of T,

xn → x∗ (as n →∞).

The convergence order of the Picard iteration in Theorem 0 is given by both a
priori and a posteriori estimates:

(4) d(xn, x∗) ≤ αn

1− α
· d(x0, x1), n ≥ 1;

(4’) d(xn, x∗) ≤ α

1− α
· d(xn, xn−1), n ≥ 1;

This fundamental result in the fixed point theory has been extended to some larger
classes of contractive and generalized contractive operators, see[16], for example, by
replacing the strict contractive condition (2) by a weaker condition of the following
type

(2’) d(Tx, Ty) ≤ ϕ(d(x, y)), x, y ∈ X

where ϕ : R+ → R+ is a certain compassion function or by a more general one
d(Tx, Ty) ≤ ϕ(d(x, y)), d(x, Tx), d(x, Ty), d(y, Tx), d(y, Ty)), x, y ∈ X,
where ϕ : R5

+ → R+ stands for a certain 5-dimensional comparison function (see
[2], [21]). Important results as Kannan or Ciric theorems belong to the second class
of generalized contractions [16].

If the generalized contractive condition in a such fixed point theorem is strong
enough, that is, the comparison function satisfies some essential conditions, then
the (possible unique) fixed point of T can be obtained by means of the sequence of
successive approximations (Picard iteration).

But, if the contractive condition is slightly weaker, as for example the case whenT
is only nonexpansive

(2”) d(Tx, Ty) ≤ d(x, y), x, y ∈ X,

then the Picard iteration (3) need no longer converge to a fixed point of T (if any).
In fact, in general, a nonexpansive operator T need not have a fixed point and even

if T possesses a fixed point, the Picard iteration need not converge to this point, see
Example 1 in Section 2.

Even if the fixed point can be obtained by the Picard iteration, it is of interest to
determine other iteration procedures that could converge faster, in a certain sense, to
the fixed point.

2. Other fixed point iteration procedures

The next example illustrates the case of a nonexpansive operator possessing an
unique fixed point, for which the Picard iteration does not converge to that fixed
point, except for the case when the initial approximation coincides to the fixed point
itself.
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EXAMPLE 1. ([9]) Let X = [0, 1] and T : [0, 1] → [0, 1] be the linear function

T (x) = 1− x, 0 ≤ x ≤ 1.

Then : a) T is nonexpansive;
b) T has an unique fixed point

FT = {x ∈ [0, 1]/T (x) = x} = {1
2
}.

c) The Picard iteration xn = T (xn−1), n = 1, 2, ..., yields the oscilla-
tory sequence a, 1− a, a, 1− a, a, ...for any x0 = a(a 6= 1

2 ).
Taking into account the fact that the class of nonexpansive operators is very impor-

tant in applications, we have to impose certain additional conditions on the ambient
space or on the operator itself, in order to ensure the existence of a fixed point or to
guarantee the convergence of the Picard iteration to a fixed point of the operator.

In what concern the existence problem, the following result was obtained indepen-
dently by Browder, Gohde and Kirk (see [3], for example):

THEOREM 1. Let C be a closed, bounded, and convex subset of a uniformly
convex Banach space, T : C → C a nonexpansive map. Then T has a fixed point.

The proofs of Theorem 1 are, unfortunately, all not constructive. As shown by
Example 1, the Picard iteration does not converge (to the fixed point) of such a
nonexpansive operator.

A similar situation is encountered for the class of lipschitzian (and pseudo-
contractive, in some sense) operators, when, even if the fixed point is unique, the
Picard iteration does not converge (see [1]).

To remove these difficulties we need to consider some other sequential procedures
to be used for approximating fixed points.

We present here a few chronological reference points. In 1953 W. R. Mann [17]
introduced an iteration procedure which can be represented in the following form

(5) xn+1 = (1− an)xn + anTxn, n = 0, 1, 2, ...

where (an) is sequence satisfying: (i) an ∈ [0, 1] and (ii)
∑

an = ∞.

Mann showed that, if T is an continuous selfmap of a closed interval [a, b] with at
most one fixed point, then the iteration scheme (5), with an = 1/(n +1),converges to
the fixed point of T.

In 1955, Krasnoselski [18] showed that, if X is a uniformly convex Banach space,
and T : X → X is nonexpansive, then the iteration (xn),

(6) xn+1 =
1
2
(xn + Txn), n = 0, 1, 2, ... .

converges to a fixed point of T.
Later, in 1957, Schaefer considered the extension of (6), by replacing 1/2 by a

constant λ ∈ [0, 1], that is, he introduced the iteration procedure (xn),

(6’) xn+1 = (1− λ)xn + λ · Txn, n = 0, 1, 2, ...

and proved similar results [19].
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It is easy to see that (xn) given by (6’) is in fact the Picard iteration for the
associated operator U = (1− λ) · I + λ · T, where I is the identity.

If we take λ = 1
2 , from (6’) we obtain (6), and, by putting λ = 1, from (6’) we obtain

the Picard iteration. Iteration (6’), which will be called in the sequel Krasnoselski-
Schaefer iteration, is a particular case of the Mann iteration (5), obtained from the
last one for an = λ (const).

It was proven for continuous mappings that, if the Mann iterative process con-
verges, then it must converge to a fixed point of T . But if T is not continuous, there
is no guarantee that, even if the Mann process converges, it will converge to a fixed
point of T , as shown by the next example.

EXAMPLE 2. Let X = [0, 1] and T : X → X the map defined by T0 = T1 =
0 and Tx = 1, for x ∈ (0, 1).

Then T is a selfmap of [0, 1],having the unique fixed point x = 0. However, the
Mann iteration, with an = 1/(n + 1) and x0 ∈ (0, 1) converges to 1, which is not a
fixed point of T .

By adding some pseudocontractive hypotheses to a nonexpansive map, Ishikawa
[7] proved the following result.

THEOREM 3. Let E be a convex, compact subset of a Hilbert space H, T : E →
E a lipschitzian and pseudocontractive map. Then the sequence (xn), defined by

(7) xn+1 = (1− αn) · xn + αnT [(1− βn)xn + βnTxn], n = 0, 1, 2, ...

where (αn), (βn) are sequences of positive numbers satisfying the conditions 0 ≤
αn ≤ βn ≤ 1, limβn = 0 and

∑
αnβn = ∞, converges strongly to a fixed point of

T.

The next diagram represents the most important iteration procedures considered
here

xn+1 = Txn, n ≥ 0 1890 Picard
⇑ λ = 1

xn+1 = 1
2 (xn + Txn), n ≥ 0 1955, Krasnoselski

⇑ λ = 1
2

xn+1 = (1− λ)xn + λTxn, n ≥ 0, 0 ≤ λ ≤ 1 1957 (Krasnoselski-)Schaeffer

⇑ an = λ(const)

xn+1 = (1− an) · xn + an · Txn, n ≥ 0, an ∈ [0, 1] 1953 Mann

⇑ bn = 0

xn+1 = (1− an) · xn + anT [(1− bn)xn + bnTxn], n ≥ 0, 0 ≤ an, bn ≤ 1

1974 Ishikawa
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3. Pseudo-contractive operators

The interest in pseudocontractive mappings is due mainly to
a) their usefulness as an additional assumption to Lipschitz type conditions in

proving convergence of fixed point iterative procedures;
b) their connection with the important class of nonlinear accretive operators.

Let H be a Hilbert space and T : H → H a selfmap.
Definition 1. T is said to be pseudocontractive on C ⊂ H if

(10) ‖Tx− Ty‖ ≤ ‖x− y‖2 + ‖Tx− Ty − (x− y)‖2 , x, y ∈ C

or equivalently

(10’) 〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 , x, y ∈ C.

Definition 2. T is called generalized pseudocontractive, if ∃r > 0 such that

(11) ‖Tx− Ty‖2 ≤ r · ‖x− y‖2 + ‖Tx− Ty − r(x− y)‖2 , x, y ∈ C,

or equivalently

(11’) 〈Tx− Ty, x− y〉 ≤ r · ‖x− y‖2 , x, y ∈ C

Remark. For r = 1, from Definition 2 we obtain Definition 1.

Definition 3. The operator T is said to be strictly pseudocontractive on C
if there exists k < 1 such that

(12) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + k ‖Tx− Ty − (x− y)‖2 , x, y ∈ C,

Defintion 4. The operator T is called strongly pseudocontractive on C if
there exist t > 1 and r > 0 such that

‖x− y‖2 ≤ ‖(1 + r)(x− y)− rt(Tx− Ty)‖ , x, y ∈ C.

Remarks. 1) For t = 1, from Definition 4 we obtain Definition 1;
2) T is pseudo-conttractive if and only if I − T is accretive ([21]).

The class of pseudo-contractive operators usually associated with lipschitzian prop-
erties has been studied extensively by various authors, see [22] and references therein.

The following result has been proved by Verma [12].

THEOREM 4. Let K be a non-empty closed convex subset of H and T : K →
K a lipschitzian and generalized pseudocontractive operator (with constant s and r,
respectively, r < 1).

Then, for any λ, 0 < λ < 2(1−r)
1−2r+s2 the iteration (xn),given by

xn+1 = (1− λ)xn + λTxn, n ≥ 0

converges strongly to the unique fixed point x∗ of T :

xn → x∗(n →∞).
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In our paper [1] we completed the result of Verma by inserting both a priori and a
posteriori error estimates (Theorem 3.1) and by finding the fastest iteration amongst
all Krasnoleski-Schafer iterations.

Moreover, when the Picard iteration and Krasnoselski-Schaefer iteration converge
simultaneously, it is possible to compare the fastest one, in a certain sense of rate of
convergence. Generally, it is possible to find the fastest Krasnoselski-Schaefer iteration
in the family, as shown by

THEOREM 5 ([1]). Let K be a non-empty closed convex subset of a Hilbert space
and T : K → K a generalized pseudocontractive (with constant r, 0 < r < 1) and
lipschitzian (with constant s > 0) operator and λ ∈ (0, 1) such that 0 < λ < 2(1−r)

1−2r+s2 .
Then
(i) T has an unique fixed point x∗ ∈ K;
(ii) The Krasnoselski-Schaefer iteration (xn) converges strongly to x∗, for each

x0 ∈ K;
(iii) ‖xn − x∗‖ ≤ θn

1−θ · ‖x1 − x0‖ , n ≥ 1
‖xn − x∗‖ ≤ θ

1−θ · ‖xn − xn−1‖ , n ≥ 1

where θ =
√

(1− λ)2 + 2λ(1− λ)r + λ2s2.
(iv) The fastest Krasnoselski-Schaefer iteration is obtained for

θ0 =
1− r

1− 2r + s2
.

EXAMPLE 3.([1]) Let K =
[
1
2 , 2

]
and T : K → K the function defined by

T (x) = 1
x , x ∈ [

1
2 , 2

]
.Then

1) T is Lipschitzian with constant s = 4;
2) T is generalized pseudocontractive with constant r > 0 arbitrary;
3) The Picard iteration, with x0 = a 6= 1yields the oscillatory sequence

a,
1
a
, a,

1
a
, ....

4) The Krasnoselki-Schaefer iteration converges to x∗ = 1, for any λ ∈(
0, 2(1−r)

17−2r

)
, r < 1;

5) For r = 0, 5, the fastest Krasnoselski-Schaefer iteration is obtained taking λ0 =
1
32 ,i.e.

xn+1 =
1
32

(
31xn +

1
xn

)
, n ≥ 0

which converges to x∗ = 1, (slowly, because the contraction coefficient θ0 =
√

63
8 ≈

0, 992 is very close to 1).

Final remarks

The class of pseudo-contractive operators has been intensively studied in the last
decade (see, for example, [4], [5]). We considered a more general class of pseudo-
contractive operators in [20].
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