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Abstract. The study of the local exponential stabilization problem for the Navier-Stokes equations
using the algebraic Riccati equation is the main aim of this paper.
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1. Introduction

Consider the Navier–Stokes system

(1.1)

yt(x, t)− ν∆y(x, t) + (y · ∇)y(x, t) = m(x)u(x, t)+
+f0(x) +∇p(x, t), (x, t) ∈ Q

(∇ · y)(x, t) = 0, ∀ (x, t) ∈ Q = Ω×(0,∞)

y = 0, on Σ = ∂Ω×(0,∞)

y(x, 0) = y0(x), x ∈ Ω

in a domain Ω of Rd , d = 2 or d = 3 where y = (y1, ..., yd) is the state
u = (u1, u2, ..., ud) is the control input,p is the unknown pressure and m is the char-
acteristic function of an open subset ω of Ω. Let

H = {y ∈ (L2(Ω))d, ∇ · y = 0, y · n = 0 on ∂Ω}, V = {y ∈ (H1
0 (Ω))d, ∇ · y = 0}

and P : (L2(Ω))d −→ H be the Leray projector.We set

b(y, z, w) =
d∑

i,j=1

∫

Ω

yiDizjwjdx, (By, w) = b(y, y, w), ∀ y, w ∈ V.

and rewrite equation (1.1) as

(1.1)′
dy

dt
(t) + νAy(t) + By(t) = P (mu) + Pf0, t ∈ [0,∞)

y(0) = y0, t ∈ (0,∞)

where A ∈ L(V, V ′) (the Stokes operator)

(Ay,w) =
d∑

i=1

∫

Ω

∇yi · ∇widx, ∀ y, w ∈ V.
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Let (ye, pe) be a steady–state solution to (1.1), i.e.,

−ν∆ye + ye · ∇ye = ∇pe + f0(x) in Ω
∇ · ye = 0 in Ω
ye = 0 on ∂Ω.

We assume that the boundary ∂Ω is a finite union of d − 1 dimensional C∞–
connected manifolds diffeomorphic with Sr

d = {x ∈ Rd, |x| = r}.
For d = 2, 3 always there is at least one steady–state solution but for small vis-

cosity constant ν this solution might be instable. However, by a recent result of
O.Imanuvilov [6], [7] (see also [2]) if (ye, pe) and y0 are sufficiently smooth, for in-
stance if

(1.2) (ye, pe) ∈ ((H3(Ω))d) ∩ V )×H1(Ω), y0 ∈ (H2(Ω))d ∩ V

and if ‖y0 − ye‖(H2(Ω))d ≤ η is sufficiently small then for each T > 0 there are

(1.3) u ∈ H1(0, T ; (L2(Ω))d), y ∈ L∞(0, T ; (H2(Ω))d ∩ V ) ∩H1(0, T ; H)

and p ∈ L2(0, T ; H1(Ω)) satisfying (1.1) and such that y(x, T ) ≡ ye(x). In particular,
this implies that there is a controller u which stabilizes the steady–state solution ye.
Here we shall treat the local exponential stabilization problem for the Navier–Stokes
using the algebraic Riccati equation associated with the linearized Stokes equation.T
he argument will be scketched only; the complete proofs will appear elsewhere. For
recent results on stabilization of fluid flows we refer to the works [1],[3],[4].

Here Hk(Ω) and H1(0, T ;X), (X is a Hilbert space) are usual Sobolev spaces. We
denote by |·| the norm of H and (L2(Ω))d and by ‖·‖ the norm of V . By (·, ·) denote
the pairing between V , V ′ (the dual space of V ) and, respectively, the scalar product
of H. Finally, |·|s is the norm of the Sobolev space (Hs(Ω))d.

2. Stabilization of the linearized equation

Substituting y by y + ye into (1.1) we are lead to the equation

(2.1)

yt − ν∆y + (y·∇)y + (ye·∇)y + (y·∇)ye = mu +∇p in Q
∇ · y = 0 in Q
y = 0 on Σ
y(x, 0) = y0(x)− ye(x) = y0(x), x ∈ Ω.

Equivalently,

(2.2)
dy

dt
(t) + νAy(t) + A0y(t) + By(t) = P (mu), t ≥ 0

y(0) = y0

where A0 ∈ L(V,H) is defined by

(2.3) (A0y, w) = b(ye, y, w) + b(y, ye, w), ∀w ∈ H.

Consider the linear system

(2.4)
dy

dt
(t) + νAy(t) + A0y(t) = P (mu)(t), t ≥ 0, y(0) = y0
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and the optimal control problem

(2.5) ϕ(y0) = Min
{

1
2

∫ ∞

0

(
∣∣∣A 7

8 y(t)
∣∣∣
2

+ |u(t)|2)dt; (y, u) subject to (2.4)
}

.

Denote by D(ϕ) the set of all y0 ∈ H for which ϕ(y0) < ∞. Under our assumptions
for each y0 ∈ H the linear Stokes equation (2.4) is exactly null controllable (see [6],
[7].) More precisely, there are u ∈ H1(0, T ; (L2(Ω))d), y ∈ L2(0, T ; (H2(Ω))d ∩ V )
solution to (2.4) such that y(T ) ≡ 0 and (see Lemma 3.1 in [2])

|u|H1(0,T ;(L2(Ω))d) ≤ C
∣∣y0

∣∣.
Moreover, we have

(2.6) ϕ(y0) ≥ C
∣∣∣A 3

8 y0
∣∣∣
2

.

because (see e.g. [5],[8])∣∣∣(A0y,A
3
4 y)

∣∣∣ ≤
∣∣∣b(y, ye, A

3
4 y)

∣∣∣ +
∣∣∣b(ye, y, A

3
4 y)

∣∣∣ ≤ C‖y‖
∣∣∣A 3

4 y
∣∣∣.

By (2.6) we see that D(ϕ) = D(A
3
8 ) = W. The space W is endowed with the graph

norm |y|W =
∣∣∣A 3

8 y
∣∣∣. Thus there is a linear self–adjoint operator R : H → H with the

domain D(R) = D(A
3
4 ) such that

1
2
(Ry0, y0) = ϕ(y0), ∀ y0 ∈ D(A

3
4 ).

Moreover, R ∈ L(W,W ′) and the latter extends to all of W.

proposition 1. Let d = 2, 3. Then the optimal control u∗ is expressed as

(2.7) u∗(t) = −mRy∗(t), ∀ t > 0.

Moreover, there is ω > 0 such that

(2.8) (Ry, y) ≥ ω‖y‖2W , ∀ y ∈ W

and R is the solution to algebraic Riccati equation

(2.9) (νAy + A0y, Ry) +
1
2
|mRy|2 =

1
2

∣∣∣A 7
8 y

∣∣∣
2

, ∀ y ∈ D(A).

Proof. Estimate (2.8) follows by (2.6). For T > 0, let (y∗, u∗) be the solution to
optimal control problem

Min

{
1
2

∫ T

0

(
∣∣∣A 7

8 y(t)
∣∣∣
2

+|u(t)|2)dt+ϕ(y(T )); (y, u) subject to (2.4) on (0, T )

}
.

Thus u∗(t) = mqT (t), ∀ t ∈ [0, T ) where qT ∈ L2(0, T ; H) ∩ Cw([0, T ];V ′) is the
solution to adjoint equation

(2.10)
d

dt
qT − (νA + A0)∗qT = A

7
4 y∗, t ∈ (0, T )

qT (T ) = −Ry∗(T ).
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By (2.10) and the unique continuous property for the Stokes equation it follows that
qT =qT ′ on (0, T ) for 0 < T < T ′. Hence qT = q is independent of T and so the above
equations extend to all of R+. Moreover,

q(t) = −Ry∗(t), ∀ t ≥ 0

and so we obtain (2.7) as claimed. Next we have

ϕ(y∗(t)) =
1
2

∫ ∞

t

(
∣∣∣A 7

8 y∗
∣∣∣
2

+ |u∗|2)ds, ∀ t ≥ 0

(
Ry∗(t),

dy∗

dt
(t)

)
+

1
2

∣∣∣A 7
8 y∗(t)

∣∣∣
2

+
1
2
|mRy∗(t)|2 = 0, a.e. t > 0.

This yields

−(Ry∗(t), νAy∗(t) + A0y
∗(t))− 1

2
|mRy∗(t)|2 +

1
2

∣∣∣A 7
8 y∗(t)

∣∣∣
2

= 0, ∀ t ≥ 0.

3. Stabilization of the Navier–Stokes equation

theorem 1. Let d = 2, 3 and let R be the operator defined in Proposition 1. Let
(ye, pe) ((H3(Ω))d∩V )×H1(Ω) be a steady–state solution to equation (1.1). Then the
feedback controller

(3.1) u = −mR(y − ye)

exponentially stabilizes ye in a neighbourhood V = {y0 ∈ W ; ‖y0 − ye‖W < ρ} of ye.
More precisely, for each y0 ∈ V there is a weak solution y ∈ L∞loc(R

+; H)∩L2
loc(R

+; V )
to closed loop system

(3.2)
dy

dt
+ νAy + A0y + By + P (mR(y − ye)) = Pf0, t > 0

y(0) = y0

such that

(3.3) |y(t)− ye| ≤ Ce−γt‖y0 − ye‖W , ∀ y0 ∈ V
for some γ > 0.

Proof. We reduce the problem to that of stability of the null solution to corresponding
closed loop system (2.2), i.e.,

(3.4)
dy

dt
+ ν0Ay + A0y + By + P (mRy) = 0, t > 0, y(0) = y0.

We consider the approximating equation

(3.5)
dyN

dt
+ ν0AyN + A0yN + BNyN + P (mRyN ) = 0,

yN (0) = y0,

where

BNy = By if ‖y‖ ≤ N, BNy =
N2

‖y‖2 By if ‖y‖ > N.
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For each y0 ∈ D(A) equation (3.5) has a unique solutionyN ∈ W 1,∞
loc (R+; H) ∩

L∞loc(R
+; D(A)). If y0 ∈ V then

(3.6) |yN (t)|2 +
∫ t

0

‖yN (s)‖2ds ≤ CT , ∀ t ∈ (0, T ),

where CT is independent of N . Thus on a subsequence N →∞
(3.7) yN −→ y weak star in L∞loc(R

+; H) ∩ L2
loc(R

+; V )

where y ∈ L2
loc(R

+; V ) ∩ Cw(R+;H) is a weak solution to equation (3.4). Now we
multiply equation (3.5) by RyN and use (2.9) to obtain that

(3.8)
d

dt
(RyN (t), yN (t)) + |mRyN (t)|2 +

∣∣∣A 3
4 yN (t)

∣∣∣
2

=

= 2(BNyN (t), RyN (t)), a.e. t > 0.

On the other hand, we have by (2.7) and the properties of b (see e.g. [5], [8]) that

(3.9)

|(BNyN , yN )| ≤ inf

(
1,

N2

‖yN‖2
)
|b(yN , yN , RyN )| ≤

≤ C|yN | 3
4
|yN | 7

4
|RyN | ≤ C

∣∣∣A 3
8 yN

∣∣∣
∣∣∣A 7

8 yN

∣∣∣
∣∣∣A 3

4 yN

∣∣∣ ≤

≤ C
∣∣∣A 7

8 yN

∣∣∣
2

(RyN , yN )
1
2

because D(Am) ⊂ (H2m(Ω))n for all noninteger m. We set

E = {y0 ∈ W ; (Ry0, y0) < ρ}.
By (3.8) and (3.9) we see that for ρ sufficiently small and y0 ∈ E we have

d

dt
(RyN (t), yN (t)) +

1
2

∣∣∣A 7
8 yN (t)

∣∣∣
2

≤ 0, a.e. t > 0

and this yields
|yN (t)| ≤ ‖yN (t)‖W ≤ C

∥∥y0
∥∥

W
e−γt, ∀ t ≥ 0

for some γ > 0. Then we see by (3.7) that

|y(t)| ≤ C
∥∥y0

∥∥
W

e−γt. ∀ t ≥ 0
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