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Abstract. Let us consider the following equation:

(1) ẋ(t)− αẋ(t− h) + βx(t) + αγx(t− h) = 0.

Our main purpose is to obtain necessary and sufficient conditions for oscillation of all solutions
of (1) where α, β, γ and h > 0.
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1. Introduction

Electrical networks containing loss less transmission lines arise, for instance, in
high speed computers, where such lines are used to interconnect switching circuits
(see [2], [11]). Since these networks can exhibit oscillatory behavior, it is naturally to
seek conditions guaranteeing oscillations of all solutions of the modelling equation.

In this paper we consider a particular circuit consisting of a loss less transmission
line terminated by lumped circuits, one of which is nonlinear, with a volt-ampere
characteristic i = g(ν). This circuit is described in [1,8] and the modelling partial
differential network equations

L
∂i

∂t
= −∂ν

∂x
, C

∂ν

∂t
= − ∂i

∂x
, 0 < x < 1, t > 0

with boundary conditions

E − ν(0, t)−Ri(0, t) = 0, C
∂ν(1, t)

∂t
= i(1, t)− f(ν(1, t))

are derived and reduced to a single difference-differential equation of neutral type

C [ν′1(t) + Kν′1(t− h)] +
(

1
z
− g

)
ν1(t)−K

(
1
z

+ g

)
ν1(t− h) =

= −f(ν1(t))−Kf(ν1(t− h) (NDDE)
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where ν1 = ν(x, t) at x = 1, ν0 = ν(x, t) at x = 0, z =

√
L

C
, h = 2

√
LC, K =

R− z

R + z
, g =

df(ν0)
dν0

.

As in the theory of ordinary differential equations it is important to analyze the
characteristic equation of the system linearized around the equilibrium solution. In
our case the linearized equation is

L(ν1) ≡ C[ν̇1(t)+Kν̇1(t−h)]+
(

1
z
− g

)
ν1(t)−K

(
1
z

+ g

)
ν1(t−h) = 0(LDDE)

and the characteristic equation, obtained by substituting ν1 = eλt, λ is complex, into
L(ν1) = 0 is q(λ) ≡ λ− αλe−λh + β + αγe−λh = 0 (CE)

where α = −K > 0, β =
1− gz

Cz
> 0, γ =

1 + gz

Cz
> 0. Denoting ν1 = x we study

(LDDE) in the form
We note such conditions (in terms of the characteristic equation) have been ob-

tained in [3]-[7], [9], [10], [12] and in the papers cited there. The cited authors consider
neutral equations different from and not including the Brayton’s equation (1).

2. Preliminaries

We say the function x(t) is a solution of equation (1) provided there exists t0 ∈ R
such that x ∈ C([t0 − h,∞), R), x(t) − αx(t − h) is continuously differentiable for
t ≥ t0 and (1) holds for t ≥ t0. A continuous function is said to be oscillatory if it
has arbitrarily large zeros; otherwise it is said to be non-oscillatory. A non-oscillatory
two times differentiable function y(t) is said to be I0 - function if yy′ < 0, yy′′ >
0, lim

t→∞
y(t) = lim

t→∞
y′(t) = 0 and it is said to be I∞ - function if yy′ > 0, yy′′ >

0, lim
t→∞

|y(t)| = lim
t→∞

|y′(t)| = ∞.

In this section we establish some lemmas which will be used in the proof of our
main result.

Lemma 1 Let x(t) be a solution of (1) and a, b, c ∈ R. Then each one of the

functions x(t− a),
∫ t−c

t−b

x(s)ds,

∫ ∞

t

x(s)ds is a solution of (1).

The conclusion is a direct consequence of the linearity and homogeneous of (1).

Lemma 2 Let x(t) be a non-oscillatory solution of (1). Then there exists a non-
oscillatory solution ω(t) of (1) which is either I0-function or I∞-function.

Proof. Without loss of generality x(t) can be considered eventually positive. Set

u(t) = x(t)− αx(t− h) + β

∫ t

t−h

x(s)ds(2)

and ω(t) = u(t)−αu(t− h) + β

∫ t

t−h

u(s)ds. By Lemma 1 u(t) and ω(t) are solutions

of (1). Since

u̇(t) = ẋ(t)− αẋ(t− h) + βx(t)− βx(t− h) = −(αγ + β)x(t− h) < 0(3)
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then u(t) is decreasing and thus either lim
t→∞

u(t) = −∞ or lim
t→∞

u(t) = l ∈ R. But

ω̇(t) = u̇(t)− αu̇(t− h) + βu(t)− βu(t− h) = −(αγ + β)u(t− h)(4)

and

ω̈(t) = −(αγ + β)u̇(t− h) > 0.(5)

In the case when lim
t→∞

u(t) = −∞ it follows that lim
t→∞

ω̇(t) = ∞ and hence ω(t) > 0,

i.e. ωω̇ > 0. In view of (5) we have ωω̈ > 0 and thus ω(t) is an I∞-function.
In the case when lim

t→∞
u(t) = l 6= 0 via (4) we get lim

t→∞
[u(t)−αu(t−h)]′ = −(αγ+β)l

and then l(1−α) = lim
t→∞

[u(t)−αu(t−h)] =
{ ∞, l < 0
−∞, l > 0 , which is a contradiction.

Thus lim
t→∞

u(t) = 0.But u̇(t) < 0 and then u(t) > 0 and ω̇(t) < 0. By definition of

ω(t) it follows lim
t→∞

ω(t) = 0 and by (5) we obtain that ω(t) is an I0-function. The
proof is complete.

Lemma 3 Let x(t) be a non-oscillatory solution of (1). Then:
a) If x(t) is an I0-function then there exists a non-oscillatory solution u(t) of (1)

which is an I0-function and
+∧

(u) = {λ > 0 : u̇ + λu ≤ 0} 6= ∅;
b) If x(t) is an I∞-function then there exists a non-oscillatory solution ν(t) of (1)

which is an I∞-function and
−∧

(ν) = {λ > 0 : −ν̇ + λν ≤ 0} 6= ∅.
Proof. Without any loss of generality x(t) can be considered eventually positive.
a) Define u(t) by (2). According to Lemma 1 u(t) is a solution of (1) and from the

proof of Lemma 2 u(t) is an I0-function. From (2) we get
u(t) ≤ x(t) + hβx(t− h) < (1 + hβ)x(t− h)

and using (3) we obtain

0 = u̇(t)+(β+αγ)x(t−h) > u̇(t)+
β + αγ

1 + hβ
u(t), i.e. 0 <

β + αγ

1 + hβ
∈

+∧
(u) ⇒

+∧
(u) 6= ∅.

b) Define ν(t) = −u(t). According to Lemma 1 ν(t) is a solution of (1). In view of
(3) we have ν̇(t) = (β + αγ)x(t− h) > 0, ν̈(t) = (β + αγ)ẋ(t− h) > 0 and hence, ν(t)
is an I∞-function. From (2) we have
ν(t) < αx(t− h) and using (3) we get

0 = −ν̇(t) + (β + αγ)x(t − h) > −ν̇(t) +
β + αγ

α
ν(t), i.e. 0 <

β + αγ

α
∈

−∧
(ν) ⇒

−∧
(ν) 6= ∅ which proves the lemma.

Lemma 4 Let x(t) be a non-oscillatory solution of (1). Then:
a) If x(t) is an I0-function then

∧+(x) 6= ∅ and x(t) > αx(t− h);
b) If x(t) is an I∞-function then

∧−(x) 6= ∅ and x(t) < (α + 1)x(t− h).
Proof. Without loss of generality x(t) can be considered eventually positive.
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a) From (1) we have 0 > ẋ(t) + βx(t) + αγx(t− h) ≥ ẋ(t) + (β + αγ)x(t) and thus
+∧

(x) 6= ∅(λ = β + αγ). Again from (1) we have 0 > ẋ(t)−αẋ(t− h) and integrating
from t to ∞ we get −αx(t− h) > −x(t) since lim

t→∞
x(t) = 0. Then x(t) > αx(t− h).

b) Now from (1) we have 0 > −αẋ(t − h) + βx(t) ≥ −αẋ(t) + βx(t) and thus
−∧

(x) 6= ∅(λ =
β

α
> 0). Again from (1) we have 0 > ẋ(t)− αẋ(t− h) and integrating

from t−h to t we get αx(t−h)−αx(t−2h) > x(t)−x(t−h), i.e. x(t) < (α+1)x(t−h).
This proves the lemma.

Lemma 5 a) If x(t) is an I0-function and x(t) > Mx(t − h) for some M, h > 0
then the solution λ0 > 0 of the equation e−λ0h = M is an upper bound of

∧+(x);
b) If x(t) is an I∞-function and x(t) < Mx(t − h) for some M,h > 0 then the

solution λ0 > 0 of the equation eλ0h = M is an upper bound of
∧−(x).

The proof is the same as the proof of Lemma 5 [7].

3. Main results

THEOREM 1 Necessary and sufficient condition for existence at least one non-
oscillatory solution of equation (1) is that its characteristic equation (CE) has a real
root.

Proof. Sufficiency. Assume (CE) has a real root λ. Then we directly check that
x(t) = eλt is a solution of (1), which is non-oscillatory.

Necessity. Assume, conversely, that there exists a non-oscillatory solution of equa-
tion (1) and, for the sake of contradiction, (CE) has no real roots. Then q(λ) 6= 0 for
any λ ∈ R. But lim

λ→∞
q(λ) = ∞ thus inf

λ∈R
q(λ) = m > 0 i.e. q(λ) ≥ m and q(−λ) ≥ m

which is equivalent to

−λ + αλe−hλ − β − αγe−hλ ≤ −m(6)

and

λ− αλehλ − β − αγehλ ≤ −m(7)

According to Lemma 2 (1) also has a non-oscillatory solution x(t) which is either
I0-function or I∞-function. Without any loss of generality we can suppose x(t) > 0
for t ≥ t1 ≥ t0. We consider two cases:

a) The case where x(t) is an I0-function. According to Lemma 4
+∧

(x) 6= ∅ and

x(t) > αx(t − h). Then according to Lemma 5
+∧

(x) is bounded above by λ0 > 0

non-depending on x. Let λ ∈
+∧

(x) and consider the function

u(t) = x(t)− αx(t− h) +
∫ ∞

t

x(s)ds.(8)
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According to Lemma 1 u(t) is a solution of (1) and according to Lemma 3 u(t) is

an I0-function. Denote by ϕ(t) = eλtx(t) for λ ∈
+∧

(x) with λ ≥ λ. We will show

λ+m1 ∈
+∧

(u) where m1 = m/N1 for N1 = 1+
1
λ

> 0. Since λ ∈
+∧

(x) we obtain ϕ(t)

is non-increasing. Integrating ẋ(t) + λx(t) ≤ 0 from t to ∞ and using lim
t→∞

x(t) = 0

we get −x(t) + λ

∫ ∞

t

x(s)ds ≤ 0.

On the one hand side via (8), (1), definition of ϕ(t) and (7) we get

u̇(t) + λu(t) = −αγx(t− h)− βx(t)− x(t) + λ

[
x(t)− αx(t− h) +

∫ ∞

t

x(s)ds

]
≤

≤ e−λtϕ(t)
[−αγeλh − β + λ− λαeλh

] ≤ −mx(t).
On the other hand side from (8) in view of definition of ϕ(t) we have

u(t) ≤ e−λt − 1
λ

[
e−λsϕ(s)|∞t −

∫ ∞

t

e−λsϕ̇(s)ds

]
<

< e−λtϕ(t)
(

1 +
1
λ

)
< N1x(t).

Then
u̇(t) + (λ + m1)u(t) ≤ −mx(t) + m1N1x(t) = (−m + m1N1)x(t) = 0

i.e. u̇(t) + (λ + m1)u(t) ≤ 0 and hence λ + m1 ∈
+∧

(u).

Now set x0 ≡ x, x1 = Tx0 = u, x2 = Tx1, . . . , xn = Txn−1, n ∈ N . Thus
+∧

(x) ≡
+∧

(x0) and for λ ∈
+∧

(x0) we have λ + m1 ∈
+∧

(x1) and after n steps we obtain

λ + nm1 ∈
+∧

(xn), n ∈ N ,

which is a contradiction since λ0 is a common upper bound for all
+∧

(xn). This
completes the proof in case a).

b) The case where x(t) is an I∞-function. According to Lemma 4
−∧

(x) 6= ∅ and

x(t) < (α+1)x(t−h). Then according to Lemma 5
−∧

(x) is bounded above by λ0 > 0

non-depending on x. Let λ ∈
−∧

(x). Consider the function

ν(t) = −x(t) + αx(t− h) +
∫ t−h

t0

x(s)ds, t ≥ t1 ≥ t0 + h.(9)

According to Lemma 1 ν(t) is a solution of (1) and according to Lemma 3 ν(t) is
an
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I∞-function. Denote by ϕ(t) = e−λtx(t), for λ ∈
−∧

(x) and λ ≥ λ. We will show

λ + m2 ∈
−∧

(ν) where m2 =
m

N2
for N2 =

(
α +

1
λ

)
e−λh.

Since λ ∈
−∧

(x) we obtain ϕ(t) is non-decreasing. Integrating −ẋ(t) + λx(t) ≤ 0

from t0 to t − h we get 0 ≥ −x(t − h) + x(t0) + λ

∫ t−h

t0

x(s)ds ≥ −x(t − h) +

λ

∫ t−h

t0

x(s)ds.

On the one hand side

λ

∫ t−h

t0

eλsϕ(s)ds =
∫ t−h

t0

ϕ(s)deλs =

= eλsϕ(s)

∣∣∣∣∣
t−h
t0 −

∫ t−h

t0

eλsϕ̇(s)ds < eλt−λhϕ(t− h)

and then

ν(t) = −eλtϕ(t)+αeλt−λhϕ(t−h)+
∫ t−h

t0

eλsϕ(s)ds ≤ eλtϕ(t−h)
(

αe−λh +
e−λh

λ

)
≤

N2e
λtϕ(t− h).

On the other hand side

−ν̇(t)+λν(t) = −αγx(t−h)−βx(t)−x(t−h)−λ

[
x(t)− αx(t− h)−

∫ t−h

t0

x(s)ds

]
≤

≤ −(αγ − αλ)eλt−λhϕ(t− h)− (β + λ)eλtϕ(t) ≤
≤ eλtϕ(t− h)

[−αγe−λh − β − λ + λαe−λh
] ≤

≤ −meλtϕ(t− h)

via (9), (1), definition of ϕ(t) and (6). Then

−ν̇(t)+(λ+m2)ν(t) ≤ −meλtϕ(t−h)+m2N2e
λtϕ(t−h) = (−m+m2N2)eλtϕ(t−h) = 0

i.e. −ν̇(t) + (λ + m2)ν(t) ≤ 0 and hence λ + m2 ∈
−∧

(ν). As in the case a) we are
led to contradiction.

The proof of the theorem is complete.

THEOREM 2 Necessary and sufficient condition for oscillation of all solutions of
equation (1) is that its characteristic equation (CE) has no real roots.

Proof. Sufficiency. Assume (CE) has no real roots. If there exists a non-oscillatory
solution of equation (1) then by Theorem1 we directly see (CE) has a real root, which
is a contradiction.
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Necessity. Let all solutions of equation (1) be oscillatory. Assume, conversely, that
the characteristic equation (CE) has a real root. Then x(t) = eλt is a solution of (1),
which is non-oscillatory. This contradiction proves the theorem.

4. Conclusions and examples

Now we obtain sufficient conditions in terms of the coefficients and arguments only
for the oscillation of solutions of (1). The advantage of working with such conditions
rather than the characteristic equation (CE) is that the said conditions are explicit,
while determining whether or not a real root to (CE) exists is a problem in itself.

COROLLARY 1 If β +αγ ≥ 1
h

ln
1
α

then (1) has no non-oscillatory solution, which
is an I0-function.

Proof. Assume, conversely, that there exists a non-oscillatory solution x(t) which
is an I0-function. Without any loss of generality we suppose x(t) > 0 for t ≥ t1 ≥ t0.
According to the proof Lemma 4 x(t) > αx(t − h) and according to Lemma 5 λ0 =
1
h

ln
1
α

is an upper bound of the set
+∧

(x). Then λ > λ0 for any λ ∈
+∧

(x) which

contradicts to the condition of Corollary 1 for λ = β + αγ ∈
+∧

(x). The corollary is
just proved.

COROLLARY 2 If
β

α
≥ 1

h
ln(1+α) then (1) has no non-oscillatory solution, which

is an I∞-function.
The proof is similar to the proof of Corollary 1 and we omit it.

REMARK. It is easy to see that if there exists a bounded non-oscillatory solution
of (1) this solution is an I0-function and if there exists a unbounded non-oscillatory
solution of (1) this solution is an I∞-function. Consequently, if there do not exist non-
oscillatory solutions of (1), which are either I∞ - or I0- functions, then all solutions
of (1) oscillate.

EXAMPLE. Consider equation (LDDE) in the case where z = 25 ohms, C = 10
p.f., g = .01 mho., h = 500 n.s., R = 5.4 (3.5) ohms. Then β = .003, γ = .005, α =
.648(.754).

Since h(β + αγ) = 3.12(3.36) and ln
1
α

= .3186(.2820) the condition of Corollary

1 holds and according to this corollary equation (1) has no non-oscillatory solutions,

which are I0-functions. But
hβ

α
= 2.3148(1.9893) and ln(1 + α) = .4994(.5618) and

according to Corollary 2 equation (1) has no non-oscillatory solutions, which are I∞-
functions. So, according to Remark, all solutions of equation (1) are oscillatory, which
confirmed the Brayton’s result [3].
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