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SZILÁRD ANDRÁS
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Abstract. The sequence (an)n≥1 is subconvex if there exists a natural number p ≥ 1 such that

an+p ≤
p−1X

i=0

αi · an+i, for all n ≥ 1, where αi ∈ (0, 1), for i = 0, p− 1 and

p−1X

i=0

αi ≤ 1. In the first

part of this note we prove an abstract Gronwall type inequality which is a generalization of theorem
4.1. from [12]. In the second part we give some applications and in the third part we give discrete
analogous for one of the applications.
Keywords: abstract Gronwall lemma, Picard operator.

AMS Subject Classification: 34A60, 45D05.

1. An abstract Gronwall inequality

The sequence (an)n≥1 is subconvex of order p if an+p ≤
p−1∑

i=0

αi · an+i, for all n ≥ 1,

where ai ∈ (0, 1), for i = 0, p− 1 and
p−1∑

i=0

αi ≤ 1. A sequence (an)n≥1 is subconvex

if there exists p ≥ 1 such that the sequence is subconvex of order p. The sequence
(an)n≥1 is a convex sequence if there exists a natural number p ≥ 1 such that

an+p =
p−1∑

j=0

αj · an+j , ∀ n ≥ 1, where αi ∈ (0, 1), for i = 0, p− 1 and
p−1∑

i=0

αi = 1. In [1]

the author proved the following theorem:

Theorem 1.1. a) Every positive subconvex sequence is convergent.
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b) The limit of the convex sequence (an)n≥1 which satisfies the relations

an+p =
p−1∑

j=0

αj · an+j , ∀ n ≥ 1, where αi ∈ (0, 1) for i = 0, p− 1 and
p−1∑

i=0

αi = 1, is

lim
n→∞

an =
lim

n→∞
cn

p−1∑

j=0

βj

=

p−1∑

j=0

βj · aj+1

p−1∑

j=0

βj

,

where βk =
k∑

j=0

αj , for 0 ≤ k ≤ p− 1.

These properties were used to prove some fixed point theorems from [4]. In this
section we generalize the following theorem given by Rus [12]:

Theorem 1.2. If X is an ordered metric space and A : X → X an increasing weakly
Picard operator, then we have the following implications:

a) If x ∈ X and x ≤ Ax, then x ≤ A∞x;
b) If x ∈ X and x ≥ Ax, then x ≥ A∞x,

where A∞x = lim
n→∞

xn and xn+1 = Axn with x0 = x.

Our main theorem is:

Theorem 1.3. If X is an ordered metric space and A : X → X an increasing weakly
Picard operator, then we have the following implications:

a) If x ∈ X and x ≤
p−1∑

i=0

αi ·Ai+1x, then x ≤ A∞x;

b) If x ∈ X and x ≥
p−1∑

i=0

αi ·Ai+1x, then x ≥ A∞x,

where A∞x is defined as in theorem (1.2) and αi ∈ (0, 1), for i = 0, p− 1 with
p−1∑

i=0

αi = 1.

Proof. We have the following inequalities:

Akx ≤
p−1∑

i=0

αi ·Ak+i+1x,

for k ∈ N. Define the sequence (an)n≥−p+1 with the properties ak = 0 for

k ∈ {−p + 1,−p + 2, . . . ,−1}, a0 = 1 and an+p =
p−1∑

j=0

αj · an+j , ∀ n ≥ −p + 1. By

multiplying the above inequalities with ak for k = −p + 1, n and adding term by term
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the obtained inequalities, we deduce

x ≤
p∑

i=1

γi ·An+p+ix,

where γi =
p−1∑

k=i

αk · an+p+i−k. The right hand part is convergent to A∞x · l ·
p−1∑

i=0

βi,

where βi =
p−1∑

k=i

αk and l is the limit of the sequence (an)n≥−p+1 . Due to

theorem (1.1) this limit exists and is equal to

0∑

j=−p+1

βj · αj+1

p−1∑

j=0

βj

=
1

p−1∑

j=0

βj

,

so the assertion of theorem (1.3) follows. ¤

Remark 1.1. An alternative solution is the following:

The operator
p−1∑

ii=0

αi · Ai+1x is also a weakly Picard operator and for fixed x

the sequences of succesive approximation xn+1 = Axn with x0 = x and

yn+1 =
p−1∑

i=0

αi · Ai+1yn with y0 = x, has the same limit so the abstract Gronwall

inequality of theorem (4.1) from [12] implies the required inequality.

Remark 1.2. If α1 = 1 and αi = 0 for i = 2, p− 1 we obtain theorem (4.1) from
[12] (the abstract Gronwall inequality).

Remark 1.3. Theorem (1.2) is different from theorem (4.1) of [12] because the in-

equality x ≤
p−1∑

i=0

αi ·Ai+1x doesn’t imply the inequality x ≤ Ax.

2. Applications

Theorem 2.1. If K : [a, b]×R→ R is a continuous and positive function, α, β, α1, α2

are positive constants and α1 + α2 = 1 then the inequality

y(x) ≤ α + α1β

x∫

a

K(x, s)y(s)ds + α2β
2

x∫

a

K2(x, s)y(s)ds + α2αβ

x∫

a

K(x, s)ds
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implies y(x) ≤ y∗(x), ∀ x ∈ [a, b], where K2(x, s) =

x∫

s

K(x, t)K(t, s)dt and y∗ is the

unique continuous solution of the equation y(x) = α + β

x∫

a

K(x, s)y(s)ds.

Proof. We consider the space of continuous functions X = C[a, b] and the operator

A : X → X defined by (Ay)(x) = α +β

x∫

a

K(x, s)y(s)ds. Due to the given conditions

this operator is an increasing Picard operator and

α1 ·Ax + α2 ·A2x = α1 ·

α + β

x∫

a

K(x, s)y(s)ds


+

+α2


α + β

x∫

a

K(x, s)


α + β

x∫

a

K(s, t)y(t)dt


 ds


 =

= α + α1β

x∫

a

K(x, s)y(s)ds + α2β
2

x∫

a

K2(x, s)y(s)ds + α2αβ

x∫

a

K(x, s)ds.

From theorem(1.3) we deduce the required inequality. ¤

Theorem 2.2. If K1,2 : [a, b] × R → R are continuous and positive functions, and
they satisfy the conditions of theorem (2) from[1], α, β, α1, α2 are positive constants
and α1 + α22 = 1 then the inequality

y(x) ≤ α + α1β




x∫

a

K(x, s)y(s)ds +

b∫

a

K2(x, s)y(s)ds


+

+βαα2




x∫

a

K(x, s)ds +

b∫

a

K2(x, s)ds


+

+α2β
2




x∫

a

K
(2)
1 (x, s)y(s)ds +

b∫

a

K
(2)
2 (x, s)ds




implies y(x) ≤ y∗(x), ∀ x ∈ [a, b], where

K
(2)
1 (x, s) =

x∫

s

K1(x, t)K1(t, s)dt +

b∫

a

K2(x, t)K1(x, t)dt,

K
(2)
2 (x, s) =

x∫

a

K1(x, t)K2(t, s)dt +

b∫

a

K2(x, t)K2(x, t)dt
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and y∗(x) is the unique solution of the equation

y(x) = α + β

x∫

a

K1(x, s)y(s)ds + β

b∫

a

K2(x, s)y(s)ds.

Proof. Consider the operator A : X → X defined by

(Ay)(x) = α + β

x∫

a

K1(x, s)y(s)ds + β

b∫

a

K2(x, s)y(s)ds.

Due to the given conditions this operator is an increasing Picard operator and

α1 ·Ax + α2 ·A2x = α1 ·

α + β

x∫

a

K1(x, s)y(s)ds + β

b∫

a

K2(x, s)y(s)ds


+

+α2


α + αβ




x∫

a

K1(x, s)ds +

b∫

a

K2(x, s)y(s)ds


+

+β2




x∫

a

K
(2)
1 (x, s)y(s)ds +

b∫

a

K
(2)
2 (x, s)y(s)ds





 =

= α + α1β




x∫

a

K(x, s)y(s)ds +

b∫

a

K2(x, s)y(s)ds


 +

+βαα2




x∫

a

K(x, s)ds +

b∫

a

K2(x, s)ds


+

+α2β
2




x∫

a

K
(2)
1 (x, s)y(s)ds +

b∫

a

K
(2)
2 (x, s)ds


 ,

where

K
(2)
1 (x, s) =

x∫

s

K1(x, t)K1(t, s)dt +

b∫

a

K2(x, t)K1(x, t)dt,

K
(2)
2 (x, s) =

x∫

a

K1(x, t)K2(t, s)dt +

b∫

a

K2(x, t)K2(x, t)dt.

¤
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3. A discrete analogous

Theorem 3.1. If the terms of the sequences (ak)k≥1 and (bk)k≥1 are positive numbers
and they satisfy the following inequality:

an ≤ α +
1
2

n−1∑

j=1

bjaj +
a

2

n−1∑

j=1

bj +
1
2

n−1∑

k=1

n−1∑

j=k

bjbkak

then we have an ≤ α

n−1∏

k=1

(
1 + bk +

b2
k

2

)
.

Proof. From the given inequality we have a1 ≤ α and a2 ≤ α

(
1 + b1 +

b2
1

2

)
. For

n = 3 we have

a3 ≤ α +
b1a1

2
+

b2a1

2
+ α

b1

2
+ α

b2

2
+

b2
1a1

2
+

b1b2a1

2
+

b2
2a1

2
≤

≤ α

(
1 + b1 +

b2
1

2

)(
1 + b2 +

b2
2

2

)
.

The general case follows by induction on n as the above case. ¤
Remark 3.1. This inequality is a discrete analogous of theorem (2.1) for α1 = α2 =
1
2
. We give this case for the simplicity of the proof. The general case can also be

treated.
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