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A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS
WITH NEGATIVE COEFFICIENTS

M.K. AOUF

Abstract. Making use of the Salagean operator, we define the class T (n, α, β).
When n = 1 and n = 0, we obtain, respectively, a new subclass of uniformly
convex functions and a corresponding subclass of starlike functions with negative
coefficients. In this paper, we obtain distortion theorem, and obtain radii of
close-to-convexity, starlikeness and convexity for functions beloning to the class
T (n, α, β).We consider integral operators associated with functions belonging to
the class T (n, α, β). We also obtain several results for the modified Hadamard
products of functions belonging to the class T (n, α, β). Distortion theorem for
the fractional calculus (that is, fractional integral and fractional derivative) of
functions in the class T (n, α, β) is obtained.
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1. INTRODUCTION

Let S denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k

that are analytic and univalent in the open unit disc U = {z ∈ C | |z| < 1}.
Let K(α) and S∗(α) denote the subclasses of S that are, respectively, convex
and starlike functions of order α with 0 ≤ α < 1. For convenience, we write
K(0) = K and S∗(0) = S∗ (see, e.g., Srivastava and Owa [17]). Goodman ([2]
and [3]) defined the following subclasses of K and S∗.

Definition 1. A function f(z) is uniformly convex (starlike) in U if f(z) is
in K(S∗) and has the property that for every circular γ contained in U , with
center ζ also in U , the arc f(γ) is convex (starlike) with respect to f(ζ).

Goodman ([2] and [3]) gave the following two-variable analytic characteri-
zations of these classes, denoted by UCV and UST, respectively.

Theorem 1. A function f(z) of the form (1.1) is in UCV if and only if

(1.2) Re

{
1 + (z − ζ)

f
′′
(z)

f ′(z)

}
≥ 0, (z, ζ) ∈ U × U,
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and is in UST if and only if

(1.3) Re
{

f(z) − f(ζ)
(z − ζ)f ′(z)

}
≥ 0, (z, ζ) ∈ U × U.

Ma and Minda [6] and Ronning [11] found independently a more applicable
one-variable characterization for UCV.

Theorem 2. A function f(z) of the form (1.1) is in UCV if and only if

(1.4) Re

{
1 +

zf
′′
(z)

f ′(z)

}
≥

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ , z ∈ U.

We note (see [2]) that Alexander’s classical result, f(z) ∈ K ⇔ zf
′
(z) ∈ S∗,

does not hold between the classes UCV and UST. Later on, Ronning [12]
introduced a new class Sp of starlike functions related to UCV defined by

(1.5) f(z) ∈ Sp ⇔ Re

{
zf

′
(z)

f(z)

}
≥

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ , z ∈ U.

Note that f(z) ∈ UCV ⇔ zf
′
(z) ∈ Sp.

Also in [11], Ronning generalized the classes UCV and Sp by introducing a
parameter α in the following way.

Definition 2. A function f(z) of the form (1.1) is in Sp(α) if it satisfies
the analytic characterization

(1.7) Re

{
zf

′
(z)

f(z)
− α

}
≥

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ , α ∈ R, z ∈ U.

One says that f(z) ∈ UCV (α), i.e., f belongs to the class of uniformly convex
functions of order α, if and only if zf

′
(z) ∈ Sp(α).

For the class Sp(α), we get a domain whose boundary is a parabola with
vertex w = 1+α

2 . Note also that Sp(α) ⊂ S∗ for all −1 ≤ α < 1, Sp(α) * S for
α < −1, and UCV (α) ⊂ K for α ≥ −1.

By β-UCV, where 0 ≤ β < ∞, we denote the class of all β-uniformly convex
functions introduced by Kanas and Wisniowska [4]. Recall that a function
f(z) ∈ S is said to be β-uniformly convex in U if the image of every circular
arc contained in U with center at ζ, where |ζ| ≤ β, is convex. Note that the
class 1-UCV coincides with the class UCV. Moreover, for β = 0 we get the
class K. It is known that f(z) ∈ β-UCV if and only if it satisfies the following
condition

(1.8) Re

{
1 +

zf
′′
(z)

f ′(z)

}
> β

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ , z ∈ U, 0 ≤ β < ∞ .
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We consider the class β-Sp, with 0 ≤ β < ∞, of β-starlike functions (see
[5]) which are associated with β-uniformly convex functions by the relation

(1.9) f(z) ∈ β-UCV ⇔ zf
′
(z) ∈ β-Sp.

Thus, the class β-Sp, with 0 ≤ β < ∞, is the subclass of S consisting of
functions that satisfy the analytic condition

(1.10) Re

{
zf

′
(z)

f(z)

}
> β

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ , z ∈ U.

For a function f(z) in S we define: D0f(z) = f(z), D1f(z) = Df(z) =
zf

′
(z), and Dnf(z) = D(Dn−1f(z)) (n ∈ N = {1, 2, . . . }). The differential

operator Dn was introduced by Salagean in [14]. It is easy to see that

(1.14) Dnf(z) = z +
∞∑

k=2

knakz
k, for all n ∈ N0 = N ∪ {0}.

For β ≥ 0, −1 ≤ α < 1, and n ∈ N0 let Sn(α, β) denote the subclass of
S consisting of functions f(z) of the form (1.1) and satisfying the analytic
condition

(1.15) Re

{
z(Dnf(z))

′

Dnf(z)
− α

}
> β

∣∣∣∣∣z(Dnf(z))
′

Dnf(z)
− 1

∣∣∣∣∣ , z ∈ U.

We note that S1(α, β) = β-UCV (α) and S0(α, β) = β-Sp(α).
We denote by T the subclass of S that consists of functions of the form

(1.18) f(z) = z −
∞∑

k=2

akz
k (ak ≥ 0).

Further, we define the class T (n, α, β) = Sn(α, β)∩T . The class T (n, α, β) was
introduced and studied by Rosy and Murugusundaramoorthy in [13]. We also
note that T (0, α, 0) = T ∗(α) (0 ≤ α < 1) and T (1, α, 0) = C(α) (0 ≤ α < 1)
(Silverman [16]); T (n, α, 0) = T ∗(n, α) (0 ≤ α < 1) (Hur and Oh [1]).

In order to show our main results we need the following lemma given by
Rosy and Murugusundaramoorthy [13].

Lemma 1. A necessary and sufficient condition for the function f(z) of the
form (1.18) to be in the class T (n, α, β) (n ∈ N0, −1 ≤ α < 1, β ≥ 0) is that

(1.20)
∞∑

k=2

kn[k(1 + β) − (α + β)]ak ≤ 1 − α.

Remark 1. Putting n = α = 0 and β = 1 in Lemma 1, we obtain the result
obtained by Ravichandran in [10, Corollary 2].
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2. THE GROWTH AND DISTORTION THEOREM

Theorem 3. Let f(z) defined by (1.18) be in the class T (n, α, β). Then

(2.1) |z| − 1 − α

2n−i(2 − α + β)
|z|2 ≤

∣∣Dif(z)
∣∣ ≤ |z| + 1 − α

2n−i(2 − α + β)
|z|2 ,

where z ∈ U and 0 ≤ i ≤ n. The bounds are attained for the function

(2.2) f(z) = z − 1 − α

2n(2 − α + β)
z2 (z ∈ U).

Proof. Note that f(z) ∈ T (n, α, β) if and only if Dif(z) ∈ T (n − i, α, β)
and that

(2.3) Dif(z) = z −
∞∑

k=2

kiakz
k.

Using Lemma 1, we know that

(2.4) 2n−i(2 − α + β)
∞∑

k=2

kiak ≤
∞∑

k=2

kn[k(1 + β) − (α + β)]ak ≤ 1 − α,

that is

(2.5)
∞∑

k=2

kiak ≤ 1 − α

2n−i(2 − α + β)
.

It follows from (2.3) and (2.5) that

(2.6)
∣∣Dif(z)

∣∣ ≥ |z| − |z|2
∞∑

k=2

kiak ≥ |z| − 1 − α

2n−i(2 − α + β)
|z|2

and

(2.7)
∣∣Dif(z)

∣∣ ≤ |z| + |z|2
∞∑

k=2

kiak ≤ |z| + 1 − α

2n−i(2 − α + β)
|z|2 .

Finally, we note that the bounds in (2.1) are attained for f(z) defined by

(2.8) Dif(z) = z − 1 − α

2n−i(2 − α + β)
z2 (z ∈ U).

This completes the proof of Theorem 3. �

Corollary 1. Let f(z) defined by (1.18) be in the class T (n, α, β). Then

(2.9) |z| − 1 − α

2n(2 − α + β)
|z|2 ≤ |f(z)| ≤ |z| + 1 − α

2n(2 − α + β)
|z|2 .

The equalities in (2.9) are attained for the function f(z) given by (2.2).

Proof. Taking i = 0 in Theorem 3, we immediately obtain (2.9). �
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Corollary 2. Let f(z) defined by (1.18) be in the class T (n, α, β). Then

(2.10) 1 − 1 − α

2n−1(2 − α + β)
|z| ≤

∣∣f ′(z)
∣∣ ≤ 1 +

1 − α

2n−1(2 − α + β)
|z| .

The equalities in (2.10) are attained for the function f(z) given by (2.2).

Proof. Setting i = 1 in Theorem 3, and making use of the definition of D1,
we get the conclusion. �

3. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 4. Let the function f(z) defined by (1.18) be in the class T (n, α, β).
Then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1, where

(3.1) r1 = r1(n, α, β, ρ) = inf
k≥2

{
(1 − ρ)kn−1[k(1 + β) − (α + β)]

1 − α

} 1
k−1

.

The result is sharp, the extremal function f(z) being given by

(3.2) f(z) = z − (1 − α)
kn[k(1 + β) − (α + β)]

zk (k ≥ 2, n ∈ N0).

Proof. We must show that |f ′(z) − 1| ≤ 1 − ρ for |z| < r1(n, α, β, ρ), where
r1(n, α, β, ρ) is given by (3.1). Indeed we find from the definition (1.18) that∣∣f ′(z) − 1

∣∣ ≤ ∞∑
k=2

kak |z|k−1 .

Thus |f ′(z) − 1| ≤ 1 − ρ if

(3.3)
∞∑

k=2

(
k

1 − ρ
)ak |z|k−1 ≤ 1.

But, by Lemma 1, (3.3) will be true if(
k

1 − ρ
)
)
|z|k−1 ≤ kn[k(1 + β) − (α + β)]

1 − α
,

that is, if

(3.4) |z| ≤
{

(1 − ρ)kn−1[k(1 + β) − (α + β)]
1 − α

} 1
k−1

(k ≥ 2).

Now Theorem 4 follows easily from (3.4). �
Theorem 5. Let the function f(z) defined by (1.18) be in the class T (n, α, β).

Then the function f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2, where

(3.5) r2 = r2(n, α, β, ρ) = inf
k≥2

{
(1 − ρ)kn[k(1 + β) − (α + β)]

(k − ρ)(1 − α)

} 1
k−1

.

The result is sharp, with the extremal function f(z) given by (3.2).
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Proof. It suffices to show that
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ ≤ 1 − ρ for |z| < r2(n, α, β, ρ),

where r2(n, α, β, ρ) is given by (3.5). Indeed we find, again from (1.18), that

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
k=2

(k − 1)ak |z|k−1

1 −
∞∑

k=2

ak |z|k−1
.

Thus
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ ≤ 1 − ρ if

(3.6)
∞∑

k=2

(
k − ρ

1 − ρ
)ak |z|k−1 ≤ 1.

But, by Lemma 1, (3.6) will be true if(
k − ρ

1 − ρ

)
|z|k−1 ≤ kn[k(1 + β) − (α + β)]

1 − α
,

that is, if

(3.7) |z| ≤
{

(1 − ρ)kn[k(1 + β) − (α + β)]
(k − ρ)(1 − α)

} 1
k−1

(k ≥ 2).

Now Theorem 5 follows easily from (3.7). �
Corollary 3. Let the function f(z) defined by (1.18) be in the class

T (n, α, β). Then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3, where

(3.8) r3 = r3(n, α, β, ρ) = inf
k≥2

{
(1 − ρ)kn−1[k(1 + β) − (α + β)]

(k − ρ)(1 − α)

} 1
k−1

.

The result is sharp, with the extremal function f(z) given by (3.2).

4. A FAMILY OF INTEGRAL OPERATORS

In view of Lemma 1, we see that z −
∞∑

k=2

bkz
k is in T (n, α, β) as long as

0 ≤ bk ≤ ak for all k. In particular, we have the following result

Theorem 6. Let the function f(z) defined by (1.18) be in the class T (n, α, β)
and let c > −1 be a real number. Then the function F (z) defined by

(4.1) F (z) =
c + 1
zc

z∫
0

tc−1 f(t)dt (c > −1)

also belongs to the class T (n, α, β).

Proof. It follows from the representation (4.1) that F (z) = z −
∞∑

k=2

bkz
k,

where bk = c+1
c+kak ≤ ak . �
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On the other hand, the converse is not true. This leads to a radius of
univalence result.

Theorem 7. Let the function F (z) = z −
∞∑

k=2

akz
k (ak ≥ 0) be in the class

T (n, α, β) and let c > −1 be a real number. Then the function f(z) given by
(4.1) is univalent in |z| < R∗, where

(4.2) R∗ = inf
k≥2

{
kn−1[k(1 + β) − (α + β)](c + 1)

(1 − α)(c + k)

} 1
k−1

.

The result is sharp.

Proof. From (4.1), we have

f(z) =
z1−c(zcF (z))′

c + 1
= z −

∞∑
k=2

c + k

c + 1
akz

k.

In order to obtain the required result, it suffices to show that |f ′(z) − 1| < 1
whenever |z| < R∗, where R∗ is given by (4.2). Now∣∣f ′(z) − 1

∣∣ ≤ ∞∑
k=2

k(c + k)
c + 1

ak |z|k−1 .

Thus |f ′(z) − 1| < 1 if

(4.3)
∞∑

k=2

k(c + k)
c + 1

ak |z|k−1 < 1.

But Lemma 1 confirms that

(4.4)
∞∑

k=2

kn[k(1 + β) − (α + β)]
1 − α

ak ≤ 1.

Hence (4.3) will be satisfied if

k(c + k)
c + 1

|z|k−1 <
kn[k(1 + β) − (α + β)]

1 − α
,

that is, if

(4.5) |z| <

{
kn−1[k(1 + β) − (α + β)](c + 1)

(1 − α)(c + k)

} 1
k−1

(k ≥ 2).

Therefore the function f(z) given by (4.1) is univalent in |z| < R∗. The sharp-
ness of the result follows if we take

�(4.6) f(z) = z − (1 − α)(c + k)
kn[k(1 + β) − (α + β)](c + 1)

zk (k ≥ 2).
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5. MODIFIED HADAMARD PRODUCTS

Let the functions fν(z) (ν = 1, 2) be defined by

(5.1) fν(z) = z −
∞∑

k=2

ak,νz
k (ak,ν ≥ 0, ν = 1, 2).

The modified Hadamard product of f1(z) and f2(z) is defined by

(5.2) (f1 ∗ f2)(z) = z −
∞∑

k=2

ak,1ak,2z
k.

Theorem 8. Let each of the functions fν(z) (ν = 1, 2) defined by (5.1) be
in the class T (n, α, β). Then (f1 ∗ f2)(z) ∈ T (n, δ(n, α, β), β), where

(5.3) δ(n, α, β) = 1 − (1 + β)(1 − α)2

2n(2 − α + β)2 − (1 − α)2
.

The result is sharp.

Proof. Employing the techniques used by Schild and Silverman in [15], we
need to find the largest δ = δ(n, α, β) such that

(5.4)
∞∑

k=2

kn[k(1 + β) − (δ + β)]
1 − δ

ak,1ak,2 ≤ 1.

Since

(5.5)
∞∑

k=2

kn[k(1 + β) − (α + β)]
1 − α

ak,1 ≤ 1

and

(5.6)
∞∑

k=2

kn[k(1 + β) − (α + β)]
1 − α

ak,2 ≤ 1,

the Cauchy-Schwarz inequality yields

(5.7)
∞∑

k=2

kn[k(1 + β) − (α + β)]
1 − α

√
ak,1ak,2 ≤ 1.

Thus it is sufficient to show that

(5.8)
kn[k(1 + β) − (δ + β)]

1 − δ
ak,1ak,2 ≤ kn[k(1 + β) − (α + β)]

1 − α

√
ak,1ak,2

for k ≥ 2, that is, that

(5.9)
√

ak,1ak,2 ≤ [k(1 + β) − (α + β)](1 − δ)
[k(1 + β) − (δ + β)](1 − α)

(k ≥ 2).

Note that

(5.10)
√

ak,1ak,2 ≤ (1 − α)
kn[k(1 + β) − (α + β)]

(k ≥ 2).
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Consequently, we need only to prove that

(5.11)
1 − α

kn[k(1 + β) − (α + β)]
≤ [k(1 + β) − (α + β)](1 − δ)

[k(1 + β) − (δ + β)](1 − α)
(k ≥ 2),

or, equivalently, that

(5.12) δ ≤ 1 − (k − 1)(1 + β)(1 − α)2

kn[k(1 + β) − (α + β)]2 − (1 − α)2
(k ≥ 2).

Since

(5.13) Φ(k) = 1 − (k − 1)(1 + β)(1 − α)2

kn[k(1 + β) − (α + β)]2 − (1 − α)2

is an increasing function of k (k ≥ 2), letting k = 2 in (5.13), we obtain

(5.14) δ ≤ Φ(2) = 1 − (1 + β)(1 − α)2

2n(2 − α + β)2 − (1 − α)2
,

which proves the main assertion of Theorem 8.
Finally, by taking the functions fν(z) (ν = 1, 2) given by

(5.15) fν(z) = z − 1 − α

2n(2 − α + β)
z2 (ν = 1, 2),

we can see that the result is sharp. �
Proceeding as in the proof of Theorem 8, we get

Theorem 9. Let the functions f1(z) and f2(z) defined by (5.1) be in the
classes T (n, α, β) and T (n, γ, β), respectively. Then

(f1 ∗ f2)(z) ∈ T (n, ξ(n, α, γ, β), β),

where

(5.16) ξ(n, α, γ, β) = 1 − (1 + β)(1 − α)(1 − γ)
2n(2 − α + β)(2 − γ + β) − (1 − α)(1 − γ)

.

The result is the best possible for the functions

(5.17) f1(z) = z − 1 − α

2n(2 − α + β)
z2, f2(z) = z − 1 − γ

2n(2 − γ + β)
z2 .

Theorem 10. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class T (n, α, β). Then the function

(5.19) h(z) = z −
∞∑

k=2

(a2
k,1 + a2

k,2)z
k

belongs to the class T (n, τ(n, α, β), β), where

(5.20) τ(n, α, β) = 1 − (1 + β)(1 − α)2

2n−1(2 − α + β)2 − (1 − α)2
.

The result is sharp for the functions fν(z) (ν = 1, 2) defined by (5.15).
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6. PROPERTIES ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS

OPERATORS

In terms of the Gauss hypergeometric function

(6.1) 2F1(δ, µ; ν; z) =
∞∑

k=0

(δ)k(µ)k

(ν)k

zk

k!

for z ∈ U , δ, µ, ν ∈ C, ν 6= 0,−1,−2, . . . , where (λ)k denotes the Pochhammer
symbol defined, in terms of the Gamma functions, by

(λ)k =
Γ(λ + k)

Γ(λ)
=

 1 (k = 0)

λ(λ + 1)...(λ + k − 1) (k ∈ N).

The generalized fractional calculus operators Iµ,ν,η
0,z and Jµ,ν,η

0,z are defined below
(cf., e.g., [8] and [18]).

Definition 3. (The generalized fractional integral operators.) The gener-
alized fractional integral of order µ is defined, for a function f(z), by

(6.2) Iµ,ν,η
0,z f(z) =

z−µ−ν

Γ(µ)

z∫
0

(z − ζ)µ−1
2F1

(
µ + ν;−η; µ; 1 − ζ

z

)
f(ζ)dζ

for µ > 0, ε > max {0, ν − η}−1, where f(z) is an analytic function in a simply-
connected region of the z-plane containing the origin, and the multiplicity of
(z − ζ)µ−1 is removed by requiring log(z − ζ) to be real when (z − ζ) > 0,
provided further that

(6.3) f(z) = O(|z|ε) (z → 0).

Definition 4. (The generalized fractional derivative operators.) The gen-
eralized fractional derivative of order µ is defined, for a function f(z), by

(6.4) Jµ,ν,η
0,z f(z) =



1
Γ(1−µ)

d
dz

{
zµ−ν

z∫
0

(z − ζ)−µ
2F1(ν − µ, 1 − η; 1 − µ ;

1 − ζ
z )f(ζ)dζ

}
(0 ≤ µ < 1) ,

dn

dzn Jµ−n,ν,η
0,z f(z) (n ≤ µ < n + 1, n ∈ N)

for ε > max {0, ν − η} − 1, where f(z) is constrained, and the multiplicity of
(z − ζ)µ−1 is removed, as in Definition 3, and ε is given by (6.3).

It follows from Definition 3 and Definition 4 that

(6.5) Iµ,−µ,η
0,z f(z) = D−µ

z f(z) (µ > 0),

(6.6) Jµ,µ,η
0,z f(z) = Dµ

z f(z) (0 ≤ µ < 1),
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where Dµ
z (µ ∈ R) is the fractional operator considered by Owa in [7] and

(subsequently) by Owa and Srivastava in [9] and Srivastava and Owa in [17].
Furthermore, in terms of the Gamma function, Definitions 3 and 4 readily
yield the following result.

Lemma 2. ([18]) The generalized fractional integral and the generalized frac-
tional derivative of a power function are given by

(6.7) Iµ,ν,η
0,z zρ =

Γ(ρ + 1)Γ(ρ − ν + η + 1)
Γ(ρ − ν + 1)Γ(ρ + µ + η + 1)

zρ−ν

for µ > 0, ρ > max{0, ν − η} − 1, and

(6.8) Jµ,ν,η
0,z zρ =

Γ(ρ + 1)Γ(ρ − ν + η + 1)
Γ(ρ − ν + 1)Γ(ρ − µ + η + 1)

zρ−ν

for 0 ≤ µ < 1, ρ > max{0, ν − η} − 1.

Theorem 11. Let f(z) defined by (1.18) be in the class T (n, α, β). Then
Γ(2 − ν + η)

Γ(2 − ν)Γ(2 + µ + η)
|z|1−ν

{
1 − (1−α)(2−ν+η)

2n−1(2−α+β)(2−ν)(2+µ+η)
|z|

}
≤

∣∣∣Iµ,ν,η
0,z f(z)

∣∣∣
≤ Γ(2 − ν + η)

Γ(2 − ν)Γ(2 + µ + η)
|z|1−ν

{
1 + (1−α)(2−ν+η)

2n−1(2−α+β)(2−ν)(2+µ+η)
|z|

}(6.9)

for z ∈ U0, µ > 0, max {ν, ν − η,−µ − η} < 2, ν(µ + η) ≤ 3µ, and
Γ(2 − ν + η)

Γ(2 − ν)Γ(2 − µ + η)
|z|1−ν

{
1 − (1−α)(2−ν+η)

2n−1(2−α+β)(2−ν)(2−µ+η)
|z|

}
≤

∣∣∣Jµ,ν,η
0,z f(z)

∣∣∣
≤ Γ(2 − ν + η)

Γ(2 − ν)Γ(2 − µ + η)
|z|1−ν

{
1 + (1−α)(2−ν+η)

2n−1(2−α+β)(2−ν)(2−µ+η)
|z|

}(6.10)

for z ∈ U0, 0 ≤ µ < 1, max {ν, ν − η, µ − η} < 2, ν(µ − η) ≥ 3µ, where

(6.11) U0 =
{

U (ν ≤ 1)
U\{0} (ν > 1) .

Each of these results is sharp for the function f(z) defined by (2.2).

Proof. First of all, since the function f(z) defined by (1.18) is in the class
T (n, α, β), we can apply Lemma 1 to deduce that

(6.12)
∞∑

k=2

ak ≤ 1 − α

2n(2 − α + β)
.

Next, making use of the assertion (6.7) of Lemma 2, we find from (1.18) that

(6.13) F (z) =
Γ(2 − ν)Γ(2 + µ + η)

Γ(2 − ν + η)
zν Iµ,ν,η

0,z f(z) = z −
∞∑

k=2

Φ(k)akz
k,
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where, for convenience,

(6.14) Φ(k) =
(1)k(2 − ν + η)k−1

(2 − ν)k−1(2 + µ + η)k−1
(k ∈ N\{1}).

The function Φ(k) defined by (6.14) is nonincreasing under the parametric
constraints stated already with (6.9), and we thus have

(6.15) 0 < Φ(k) ≤ Φ(2) =
2(2 − ν + η)

(2 − ν)(2 + µ + η)
(k ∈ N\{1}).

Now the assertion (6.9) of Theorem 11 follows from (6.12) and (6.15).
The inequalities (6.10) can be proved similarly, observing that from (6.8)

we get

(6.16) G(z) =
Γ(2 − ν)Γ(2 − µ + η)

Γ(2 − ν + η)
zν Jµ,ν,η

0,z f(z) = z −
∞∑

k=2

Ψ(k)akz
k,

where

0 < Ψ(k) =
(1)k(2 − ν + η)k−1

(2 − ν)k−1(2 − µ + η)k−1

≤ Ψ(2) =
2(2 − ν + η)

(2 − ν)(2 − µ + η)
(k ∈ N\{1}),

(6.17)

under the parametric constraints stated already with (6.10).
Finally, by observing that the equalities in each of the assertions (6.9) and

(6.10) are attained by the function f(z) given by (2.2), we complete the proof
of Theorem 11. �

In view of the relationships (6.5) and (6.6), by setting ν = −µ and ν = µ
in our assertions (6.9) and (6.10), respectively, we obtain the following result.

Corollary 4. Let f(z) defined by (1.18) be in the class T (n, α, β). Then

|z|1+µ

Γ(2 + µ)

{
1 − 1 − α

2n−1(2 − α + β)(2 + µ)
|z|

}
≤

∣∣D−µ
z f(z)

∣∣
≤ |z|1+µ

Γ(2 + µ)

{
1 +

1 − α

2n−1(2 − α + β)(2 + µ)
|z|

}
(z ∈ U ; µ > 0) .

(6.18)

The result is sharp for the function f(z) given by (2.2).

Remark 2. Note that the result obtained by Rosy and Murugusundaramoor-
thy in [13, Corollary 2] is not correct. The correct result is given by (6.18).

Corollary 5. Let f(z) defined by (1.18) be in the class T (n, α, β). Then

|z|1−µ

Γ(2 − µ)

{
1 − 1 − α

2n−1(2 − α + β)(2 − µ)
|z|

}
≤ |Dµ

z f(z)|

≤ |z|1−µ

Γ(2 − µ)

{
1 +

1 − α

2n−1(2 − α + β)(2 − µ)
|z|

}
(z ∈ U ; 0 ≤ µ < 1) .

(6.19)
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The result is sharp for the function f(z) given by (2.2).

Remark 3. Note that the result obtained by Rosy and Murugusundaramoor-
thy in [13, Corollary 3] is not correct. The correct result is given by (6.19).
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